Skip to content

Research at St Andrews

Fin whale density and distribution estimation using acoustic bearings derived from sparse arrays

Research output: Contribution to journalArticle

DOI

Abstract

Passive acoustic monitoring of marine mammals is common, and it is now possible to estimate absolute animal density from acoustic recordings. The most appropriate density estimation method depends on how much detail about animals' locations can be derived from the recordings. Here, a method for estimating cetacean density using acoustic data is presented, where only horizontal bearings to calling animals are estimable. This method also requires knowledge of call signal-to-noise ratios, as well as auxiliary information about call source levels, sound propagation, and call production rates. Results are presented from simulations, and from a pilot study using recordings of fin whale (Balaenoptera physalus) calls from Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) hydrophones at Wake Island in the Pacific Ocean. Simulations replicating different animal distributions showed median biases in estimated call density of less than 2%. The estimated average call density during the pilot study period (December 2007-February 2008) was 0.02 calls hr-1 km2 (coefficient of variation, CV: 15%). Using a tentative call production rate, estimated average animal density was 0.54 animals/1000 km2 (CV: 52%). Calling animals showed a varied spatial distribution around the northern hydrophone array, with most detections occurring at bearings between 90 and 180 degrees.

Close

Details

Original languageEnglish
Pages (from-to)2980-2993
Number of pages14
JournalJournal of the Acoustical Society of America
Volume143
Issue number5
Early online date18 May 2018
DOIs
StateE-pub ahead of print - 18 May 2018

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Delphinid echolocation click detection probability on near-seafloor sensors

    Frasier, K. E., Wiggins, S. M., Harris, D., Marques, T. A., Thomas, L. & Hildebrand, J. A. Sep 2016 In : Journal of the Acoustical Society of America. 140, 3, p. 1918-1930 13 p.

    Research output: Contribution to journalArticle

  2. Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico

    Hildebrand, J., Baumann-Pickering, S., Frasier, K., Trickey, J., Merkens, K., Wiggins, S., McDonald, M., Garrison, L., Harris, D., Marques, T. A. & Thomas, L. 12 Nov 2015 In : Scientific Reports. 5, 15 p., 16343

    Research output: Contribution to journalArticle

Related by journal

  1. Modelling the broadband propagation of marine mammal echolocation clicks for click-based population density estimates

    von Benda-Beckmann, A., Thomas, L. J., Tyack, P. L. & Ainslie, M. Feb 2018 In : Journal of the Acoustical Society of America. 143, 2, p. 954-967

    Research output: Contribution to journalArticle

  2. Two unit analysis of Sri Lankan pygmy blue whale song over a decade

    Miksis-Olds, J. L., Nieukirk, S. L. & Harris, D. V. 13 Dec 2018 In : Journal of the Acoustical Society of America. 144, 6, p. 3618-3626 9 p.

    Research output: Contribution to journalArticle

  3. Ultrasonic waves in uniaxially stressed multilayered and 1-D phononic structures: guided and Floquet wave analysis

    Demčenko, A., Wilson, R., Cooper, J., Mazilu, M. & Volker, A. 5 Jul 2018 In : Journal of the Acoustical Society of America. 144, 1, p. 81-91 12 p.

    Research output: Contribution to journalArticle

ID: 253233401