Skip to content

Research at St Andrews

Finite 3-groups of class 3 whose elements commute with their automorphic images

Research output: Contribution to journalArticlepeer-review

Author(s)

A. Abdollahi, A. Faghihi, S. A. Linton, E. A. O'Brien

School/Research organisations

Details

Original languageEnglish
Pages (from-to)1-7
Number of pages7
JournalArchiv der Mathematik
Volume95
Issue number1
DOIs
Publication statusPublished - 2010

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Polynomial-time proofs that groups are hyperbolic

    Holt, D., Linton, S., Neunhoeffer, M., Parker, R., Pfeiffer, M. & Roney-Dougal, C. M., May 2021, In: Journal of Symbolic Computation. 104, p. 419-475

    Research output: Contribution to journalArticlepeer-review

  2. GAP – Groups, Algorithms, and Programming, Version 4.11.1

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 2 Mar 2021

    Research output: Non-textual formSoftware

  3. GAP – Groups, Algorithms, and Programming, Version 4.11.0

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 29 Feb 2020

    Research output: Non-textual formSoftware

  4. GAP – Groups, Algorithms, and Programming, Version 4.10.2

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 19 Jun 2019

    Research output: Non-textual formSoftware

  5. GAP – Groups, Algorithms, and Programming, Version 4.10.1

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 23 Feb 2019

    Research output: Non-textual formSoftware

Related by journal

  1. The intersection graph of a finite simple group has diameter at most 5

    Freedman, S. D., 13 Feb 2021, In: Archiv der Mathematik. First Online, 7 p.

    Research output: Contribution to journalArticlepeer-review

  2. Characterising bimodal collections of sets in finite groups

    Huczynska, S. & Paterson, M., 9 Jul 2019, In: Archiv der Mathematik. First Online, 10 p.

    Research output: Contribution to journalArticlepeer-review

  3. A note on the probability of generating alternating or symmetric groups

    Morgan, L. & Roney-Dougal, C. M., Sep 2015, In: Archiv der Mathematik. 105, 3, p. 201-204 4 p.

    Research output: Contribution to journalArticlepeer-review

  4. Finite groups are big as semigroups

    Dolinka, I. & Ruskuc, N., Sep 2011, In: Archiv der Mathematik. 97, 3, p. 209-217 9 p.

    Research output: Contribution to journalArticlepeer-review

ID: 5104761

Top