Skip to content

Research at St Andrews

From Mantle to Motzfeldt: a genetic model for syenite-hosted Ta,Nb-mineralisation

Research output: Contribution to journalArticle

Open Access Status

  • Embargoed (until 27/02/20)


Adrian A. Finch, Jamie A McCreath, Callum D.J. Reekie, William Hutchison, Abdulmalik Ismaila, Ashlyn Armour-Brown, Tom Andersen, Siri L. Simonsen

School/Research organisations


A genetic model for the Motzfeldt Tantalum-Niobium-rich syenite in south-west Greenland, considered to be one of the world’s largest Ta prospects, is presented. The Motzfeldt primary magma formed early in regional Gardar (1273 ± 6 Ma) rifting. Isotope signatures indicate that the Hf had multiple sources involving juvenile Gardar Hf mixed with older (Palaeoproterozoic or Archaean) Hf. We infer that other High Field Strength Elements (HFSE) similarly had multiple sources. The magma differentiated in the crust and ascended before emplacement at the regional unconformity between Ketilidian basement and Eriksfjord supracrustals. The HFSE-rich magmas crystallised Ta-rich pyrochlore which formed pyrochlore-rich crystal mushes, and it is these pyrochlore-rich horizons, rich in Ta and Nb, that are the focus of exploration. The roof zone chilled and repeated sheeting at the roof provided a complex suite of cross-cutting syenite variants, including pyrochlore microsyenite, in a ‘Hot Sheeted Roof’ model. The area was subject to hydrothermal alteration which recrystallized alkali feldspar to coarse perthite and modified the mafic minerals to hematite, creating the friable and striking pink-nature of the Motzfeldt Sø Centre. Carbon and oxygen isotope investigation of carbonate constrains fluid evolution and shows that carbonate is primarily mantle-derived but late-stage hydrothermal alteration moved the oxygen isotopes towards more positive values (up to 21‰). The hydrothermal fluid was exceptionally fluorine-rich and mobilised many elements including U and Pb but did not transport HFSE such as Ta, Hf and Nb. Although the U and Pb content of the pyrochlore was enhanced by the fluid, the HFSE contents remained unchanged and therefore Hf isotopes were unaffected by fluid interaction. While the effect on hydrothermal alteration on the visual appearance of the rock is striking, magmatic processes concentrated HFSE including Ta and the hydrothermal phase has not altered the grade. Exploration for HFSE mineralisation commonly relies on airborne radiometric surveying which is particularly sensitive to the presence of U, Th. A crucial lesson from Motzfeldt is that the best target is unaltered pyrochlore which was identified less easily by radiometric survey. Careful petrological/mineral studies are necessary before airborne survey data can be fully interpreted.


Original languageEnglish
Pages (from-to)402-416
Number of pages15
JournalOre Geology Reviews
Early online date27 Feb 2019
Publication statusPublished - Apr 2019

    Research areas

  • Pyrochlore, Tantalum, Alkaline, Gardar Province, Hydrothermal alteration, Greenland

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. How volcanoes recycle the Earth’s crust to uncover rare metals that are vital to green technology

    Finch, A., Borst, A. & Hutchison, W., 30 Oct 2019, The Conversation.

    Research output: Contribution to specialist publicationArticle

  2. Sulphur isotopes of alkaline magmas unlock long-term records of crustal recycling on Earth

    Hutchison, W., Babiel, R., Finch, A. A., Marks, M., Markl, G., Boyce, A. J., Stüeken, E. E., Friis, H., Borst, A. M. & Horsburgh, N. J., 16 Sep 2019, In : Nature Communications. 10, 12 p., 4208.

    Research output: Contribution to journalArticle

  3. The evolution of magma during continental rifting: new constraints from the isotopic and trace element signatures of silicic magmas from Ethiopian volcanoes

    Hutchison, W., Mather, T. A., Pyle, D. M., Boyce, A. J., Gleeson, M. L. M., Yirgu, G., Blundy, J. D., Ferguson, D. J., Vye-Brown, C., Millar, I. L., Sims, K. W. W. & Finch, A. A., 1 May 2018, In : Earth and Planetary Science Letters. 489, p. 203-218 16 p.

    Research output: Contribution to journalArticle

  4. Pinpointing deep geothermal upflow in zones of complex tectono-volcanic degassing: new insights from Aluto volcano, Main Ethiopian Rift

    Jolie, E., Hutchison, W., Driba, D. L., Jentsch, A. & Gizaw, B., 21 Aug 2019, In : Geochemistry, Geophysics, Geosystems. Early View, 16 p.

    Research output: Contribution to journalArticle

  5. Structural state of rare earth elements in eudialyte-group minerals

    Borst, A. M., Finch, A. A., Friis, H., Horsburgh, N., Gamaletsos, P., Goettlicher, J., Steininger, R. & Geraki, K., 2 Aug 2019, In : Mineralogical Magazine. FirstView, 16 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Tectonic evolution and copper-gold metallogenesis of the Papua New Guinea and Solomon Islands region

    Holm, R. J., Tapster, S., Jelsma, H. A., Rosenbaum, G. & Mark, D. F., Jan 2019, In : Ore Geology Reviews. 104, p. 208-226

    Research output: Contribution to journalArticle

  2. Fenites associated with carbonatite complexes: a review

    Elliott, H. A. L., Wall, F., Chakhmouradian, A. R., Siegfried, P. R., Dahlgren, S., Weatherley, S., Finch, A. A., Marks, M. A. W., Dowman, E. & Deady, E., Feb 2018, In : Ore Geology Reviews. 93, p. 38-59 22 p.

    Research output: Contribution to journalReview article

  3. Lithostratigraphic and structural reconstruction of the Zn-Pb-Cu-Ag-Au Lemarchant volcanogenic massive sulphide (VMS) deposit, Tally Pond group, central Newfoundland, Canada

    Cloutier, J., Piercey, S. J., Lode, S., Vande Gutche, M. & Copeland, D. A., Apr 2017, In : Ore Geology Reviews. 84, p. 154-173

    Research output: Contribution to journalArticle

ID: 258217284