Skip to content

Research at St Andrews

Genetic diversity hotspots and refugia identified by mapping multi-plant species haplotype diversity in China

Research output: Contribution to journalArticle

Author(s)

Tao Deng, Richard J. Abbott, Wenqing Li, Hang Sun, Sergei Volis

School/Research organisations

Abstract

Historical processes during the Quaternary are likely to have left a signature on the geographical distribution of intraspecific genetic variation. In particular, high genetic uniqueness could be expected within glacial refugia for multiple species. We aimed to test this for plants in China and whether multi-species hotspots of genetic diversity are good indicators of glacial refugia in this region. From chloroplast DNA haplotype data for 116 species we calculated two local genetic diversity metrics for each species: haplotype genetic richness and genetic uniqueness. From these two, only uniqueness could reliably identify refugia, whereas richness may indicate either glacial refugia or areas recolonized by genetic lineages from different refugia in the postglacial period. Our results suggest the occurrence of numerous cryptic refugia and their likely importance in the maintenance and evolution of the Chinese flora, and indicate that an approach that locates geographic hotspots of genetic diversity data can reliably identify refugia.
Close

Details

Original languageEnglish
Pages (from-to)136-151
Number of pages16
JournalIsrael Journal of Plant Sciences
Volume66
Issue number3-4
DOIs
Publication statusPublished - 27 Aug 2019

    Research areas

  • China, Comparative phylogeography, Glacial refugia, Genetic hotspots, Haplotype diversity

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Ancient introgression drives adaptation to cooler and drier mountain habitats in a cypress species complex

    Ma, Y., Wang, J., Hu, Q., Li, J., Sun, Y., Zhang, L., Abbott, R. J., Liu, J. & Mao, K., 18 Jun 2019, In : Communications Biology. 2, 12 p., 213.

    Research output: Contribution to journalArticle

  2. Late Pleistocene speciation of three closely related tree peonies endemic to the Qinling–Daba Mountains, a major glacial refugium in Central China

    Xu, X-X., Cheng, F-Y., Peng, L-P., Sun, Y-Q., Hu, X-G., Li, S-Y., Xian, H-L., Jia, K-H., Abbott, R. J. & Mao, J-F., 17 Jun 2019, In : Ecology and Evolution. Early View, 21 p.

    Research output: Contribution to journalArticle

  3. Divergence and reproductive isolation between two closely related allopatric Iris species

    Volis, S., Zhang, Y-H., Deng, T., Dorman, M., Blecher, M. & Abbott, R. J., Jun 2019, In : Biological Journal of the Linnean Society. 127, 2, p. 377-389 13 p.

    Research output: Contribution to journalArticle

  4. A mixing-isolation-mixing model of speciation can potentially explain hotspots of species diversity

    Abbott, R. J., Mar 2019, In : National Science Review. 6, 2, p. 290-291 2 p.

    Research output: Contribution to journalComment/debate

  5. Completing the hybridization triangle: the inheritance of genetic incompatibilities during homoploid hybrid speciation in ragworts (Senecio).

    Brennan, A. C., Hiscock, S. J. & Abbott, R. J., Feb 2019, In : AoB Plants. 11, 1, 15 p., ply078.

    Research output: Contribution to journalArticle

ID: 261427008

Top