Skip to content

Research at St Andrews

Geographic variation of the major histocompatibility complex in Eastern Atlantic grey seals (Halichoerus grypus).

Research output: Contribution to journalArticle

Abstract

Pathogen-driven balancing selection maintains high genetic diversity in many vertebrates, particularly in the major histocompatibility complex (MHC) immune system gene family, which is often associated with disease susceptibility. In large natural populations where subpopulations face different pathogen pressures, the MHC should show greater genetic differentiation within a species than neutral markers. We examined genetic diversity at the MHC-DQB locus and nine putatively neutral microsatellite markers in grey seals (Halichoerus grypus) from eight United Kingdom (UK) colonies, the Færoe Islands and Sable Island, Canada. Five DQB alleles were identified in grey seals, which varied in prevalence across the grey seal range. Among the seal colonies, significant differences in DQB allele and haplotype frequencies and in average DQB heterozygosity were observed. Additionally, the DQB gene exhibited greater differentiation among colonies compared with neutral markers, yet a weaker pattern of isolation by distance (IBD). After correcting for the underlying IBD pattern, subpopulations breeding in similar habitats were more similar to one another in DQB allele frequencies than populations breeding in different habitats, but the same did not hold true for microsatellites, suggesting that habitat-specific pathogen pressure influences MHC evolution. Overall, the data are consistent with selection at MHC-DQB loci in grey seals with both varying selective pressures and geographic population structure appearing to influence the DQB genetic composition of breeding colonies.
Close

Details

Original languageEnglish
Pages (from-to)740-752
Number of pages13
JournalMolecular Ecology
Volume20
Issue number4
Early online date28 Dec 2010
DOIs
StatePublished - 2011

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Understanding the population consequences of disturbance

    Pirotta, E., Booth, C. G., Costa, D. P., Fleishman, E., Kraus, S. D., Lusseau, D., Moretti, D., New, L. F., Schick, R. S., Schwarz, L. K., Simmons, S. E., Thomas, L., Tyack, P. L., Weise, M. J., Wells, R. S. & Harwood, J. 12 Sep 2018 In : Ecology and Evolution. Early View, 13 p.

    Research output: Contribution to journalReview article

  2. A simulation approach to assessing environmental risk of sound exposure to marine mammals

    Donovan, C. R., Harris, C. M., Milazzo, L., Harwood, J., Marshall, L. & Williams, R. Apr 2017 In : Ecology and Evolution. 7, 7, p. 2101-2111 11 p.

    Research output: Contribution to journalArticle

  3. Approaches to Understanding the Cumulative Effects of Stressors on Marine Mammals

    Tyack, P. L., Bailey, H., Crocker, D., Estes, J. E., Francis, C. D., Harwood, J., Schwacke, L., Thomas, L. J. & Wartzok, D. 2017 Washington DC: National Academies Press. 146 p.

    Research output: Book/ReportCommissioned report

  4. Monitoring population-level responses of marine mammals to human activities

    Fleishman, E., Costa, D. P., Harwood, J., Kraus, S., Moretti, D., New, L. F., Schick, R. S., Schwarz, L. K., Simmons, S. E., Thomas, L. & Wells, R. S. Jul 2016 In : Marine Mammal Science. 32, 3, p. 1004-1021

    Research output: Contribution to journalArticle

  5. Predicting the effects of human developments on individual dolphins to understand potential long-term population consequences

    Pirotta, E., Harwood, J., Thompson, P., New, L., Cheney, B., Arso Civil, M., Hammond, P. S., Donovan, C. R. & Lusseau, D. Nov 2015 In : Proceedings of the Royal Society B: Biological Sciences. 282, 1818, 9 p., 20152109

    Research output: Contribution to journalArticle

Related by journal

  1. Molecular Ecology (Journal)

    Abbott, R. J. (Editor)
    20032010

    Activity: Publication peer-review and editorial workEditor of research journal

  2. Molecular Ecology (Journal)

    Ritchie, M. G. (Editor)
    2001

    Activity: Publication peer-review and editorial workEditor of research journal

Related by journal

  1. Demographic expansion and genetic load of the halophyte model plant Eutrema salsugineum

    Wang, X-J., Hu, Q-J., Guo, X-Y., Wang, K., Ru, D-F., German, D. A., Weretilnyk, E. A., Abbott, R. J., Lascoux, M. & Liu, J-Q. Jul 2018 In : Molecular Ecology. 27, 14, p. 2943-2955

    Research output: Contribution to journalArticle

  2. Opposing patterns of intraspecific and interspecific differentiation in sex chromosomes and autosomes

    Moran, P., Pascoal, S., Cezard, T., Risse, J., Ritchie, M. G. & Bailey, N. W. 10 Jun 2018 In : Molecular Ecology. Early view

    Research output: Contribution to journalArticle

  3. Population genomic analysis reveals that homoploid hybrid speciation can be a lengthy process

    Ru, D., Sun, Y., Wang, D., Chen, Y., Wang, T., Hu, Q., Abbott, R. J. & Liu, J. 22 Nov 2018 In : Molecular Ecology. Early View, 13 p.

    Research output: Contribution to journalArticle

  4. These aren’t the loci you’re looking for: principles of effective SNP filtering for molecular ecologists

    O'Leary, S. J., Puritz, J. B., Willis, S. C., Hollenbeck, C. M. & Portnoy, D. S. Aug 2018 In : Molecular Ecology. 27, 16, p. 3193-3206 14 p.

    Research output: Contribution to journalArticle

  5. Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (Dactylorhiza) with distinct ecological optima

    Balao, F., Trucchi, E., Wolfe, T., Hao, B-H., Lorenzo, M. T., Baar, J., Sedman, L., Kosiol, C., Amman, F., Chase, M. W., Hedrén, M. & Paun, O. 4 Jul 2017 In : Molecular Ecology. 26, 14, p. 3649-3662 14 p.

    Research output: Contribution to journalArticle

ID: 152191650