Skip to content

Research at St Andrews

Glacier calving rates due to subglacial discharge, fjord circulation, and free convection

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

K. M. Schild, C. E. Renshaw, D. I. Benn, A. Luckman, R. L. Hawley, P. How, L. Trusel, F. R. Cottier, A. Pramanik, N. R. J. Hulton

School/Research organisations

Abstract

Tidewater glacier calving provides the most direct mechanism of ice transfer from land to the ocean. However, the physical melt processes influencing calving remain challenging to constrain. In this study we focus on calving rates at Kongsbreen, a tidewater glacier in Svalbard, due to three mechanisms of submarine melt: 1) free convection, 2) horizontal fjord circulation, and 3) meltwater discharge. To calculate an overall calving rate, we measure glacier velocity and terminus change using Sentinel imagery. We calculate free convection, fjord circulation, and meltwater discharge calving using mooring data for mid-fjord ocean temperature (30-80 m depth), reanalysis results for meltwater runoff, and georectified time-lapse imagery to track icebergs and infer surface circulation. Results show the total glacier calving rate is highly correlated with ocean temperature during the 2016 melt season. When runoff was present, we found that subglacial discharge accounted for calving rates an order of magnitude greater than the maximum calving rates assigned to the other two melting mechanisms combined. Further, subglacial discharge at Kongsbreen was more efficient in inducing calving later in the season than earlier in the season, implying that the increase in ocean temperatures, the timing of meltwater discharge within a melt season, and/or the development of discrete meltwater exit channels are critical components to calving rates. As the recent atmospheric warming trend and subsequent increase in meltwater discharge is expected to continue, it is essential to understand the processes contributing to an increase in glacier calving and incorporate these processes into predictive models.
Close

Details

Original languageEnglish
Number of pages16
JournalJournal of Geophysical Research - Earth Surface
VolumeEarly View
Early online date15 Sep 2018
DOIs
Publication statusE-pub ahead of print - 15 Sep 2018

    Research areas

  • Calving, Tidewater glacier, Iceberg, Submarine melt, Time-lapse camera, Svalbard

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Sensitivity of a calving glacier to ice—ocean interactions under climate change: new insights from a 3-D full-Stokes model

    Todd, J., Christoffersen, P., Zwinger, T., Råback, P. & Benn, D. I., 14 Jun 2019, In : Cryosphere. 13, 6, p. 1681-1694 14 p.

    Research output: Contribution to journalArticle

  2. Automatic detection of calving events from time-lapse imagery at Tunabreen, Svalbard

    Vallot, D., Adinugroho, S., Strand, R., How, P., Pettersson, R., Benn, D. & Hulton, N. R. J., 29 Mar 2019, In : Geoscientific Instrumentation Methods and Data Systems. 8, 1, p. 113-127 15 p.

    Research output: Contribution to journalArticle

  3. Calving controlled by melt-under-cutting: detailed calving styles revealed through time-lapse observations

    How, P., Schild, K. M., Benn, D. I., Noormets, R., Kirchner, N., Luckman, A., Vallot, D., Hulton, N. R. J. & Borstad, C., 30 Jan 2019, In : Annals of Glaciology. First View, 12 p.

    Research output: Contribution to journalArticle

  4. Physical conditions of fast glacier flow: 3. Seasonally-evolving ice deformation on Store Glacier, West Greenland

    Young, T. J., Christoffersen, P., Doyle, S. H., Nicholls, K. W., Stewart, C. L., Hubbard, B., Hubbard, A., Lok, L. B., Brennan, P., Benn, D. I., Luckman, A. & Bougamont, M., Jan 2019, In : Journal of Geophysical Research - Earth Surface. 124, 1, p. 245-267 23 p.

    Research output: Contribution to journalArticle

  5. Multiple Late Holocene surges of a High-Arctic tidewater glacier system in Svalbard

    Lovell, H., Benn, D. I., Lukas, S., Ottesen, D., Luckman, A., Hardiman, M., Barr, L. D., Boston, C. M. & Sevestre, H., 1 Dec 2018, In : Quaternary Science Reviews. 201, p. 162-185 24 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Physical conditions of fast glacier flow: 3. Seasonally-evolving ice deformation on Store Glacier, West Greenland

    Young, T. J., Christoffersen, P., Doyle, S. H., Nicholls, K. W., Stewart, C. L., Hubbard, B., Hubbard, A., Lok, L. B., Brennan, P., Benn, D. I., Luckman, A. & Bougamont, M., Jan 2019, In : Journal of Geophysical Research - Earth Surface. 124, 1, p. 245-267 23 p.

    Research output: Contribution to journalArticle

  2. A full-Stokes 3D calving model applied to a large Greenlandic glacier

    Todd, J., Christoffersen, P., Zwinger, T., Råback, P., Chauché, N., Benn, D., Luckman, A., Ryan, J., Toberg, N., Slater, D. & Hubbard, A., 1 Mar 2018, In : Journal of Geophysical Research - Earth Surface. 123, 3, p. 410-432 23 p.

    Research output: Contribution to journalArticle

  3. Tidewater glacier surges initiated at the terminus

    Sevestre, H., Benn, D. I., Luckman, A., Nuth, C., Kohler, J., Lindbäck, K. & Pettersson, R., 26 Apr 2018, In : Journal of Geophysical Research - Earth Surface. In press

    Research output: Contribution to journalArticle

  4. Ice and firn heterogeneity within Larsen C Ice Shelf from borehole optical televiewing

    Ashmore, D. W., Hubbard, B., Luckman, A., Kulessa, B., Bevan, S., Booth, A., Munneke, P. K., O'Leary, M., Sevestre, H. & Holland, P. R., May 2017, In : Journal of Geophysical Research - Earth Surface. 122, 5, p. 1139-1153 15 p.

    Research output: Contribution to journalArticle

ID: 255554054