Skip to content

Research at St Andrews

Gliotransmission and adenosinergic modulation: insights from mammalian spinal motor networks

Research output: Contribution to journalReview article

DOI

Open Access permissions

Open

Abstract

Astrocytes are proposed to converse with neurons at tripartite synapses, detecting neurotransmitter release and responding with release of gliotransmitters, which in turn modulate synaptic strength and neuronal excitability. However, a paucity of evidence from behavioral studies calls into question the importance of gliotransmission for the operation of the nervous system in healthy animals. Central pattern generator (CPG) networks in the spinal cord and brainstem coordinate the activation of muscles during stereotyped activities such as locomotion, inspiration and mastication, and may therefore provide tractable models in which to assess the contribution of gliotransmission to behaviorally relevant neural activity. Here, we review evidence for gliotransmission within spinal locomotor networks, including studies indicating that adenosine derived from astrocytes regulates the speed of locomotor activity via metamodulation of dopamine signaling.
Close

Details

Original languageEnglish
Pages (from-to)3311-3327
JournalJournal of Neurophysiology
Volume118
Issue number6
Early online date27 Sep 2017
DOIs
Publication statusPublished - Dec 2017

    Research areas

  • Spinal cord, Gliotransmission, Adenosine, Locomotion, CPG

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Mutant C9orf72 human iPSC-derived astrocytes cause non-cell autonomous motor neuron pathophysiology

    Zhao, C., Devlin, A-C., Chouhan, A. K., Selvaraj, B., Stavrou, M., Burr, K., Brivio, V., He, X., Mehta, A., Story, D., Shaw, C., Dando, O., Hardingham, G., Miles, G. B. & Chandran, S., 16 Dec 2019, In : Glia. Early View

    Research output: Contribution to journalArticle

  2. Balanced cholinergic modulation of spinal locomotor circuits via M2 and M3 muscarinic receptors

    Nascimento, F., Spindler, L. R. B. & Miles, G. B., 1 Oct 2019, In : Scientific Reports. 9, 16 p., 14051.

    Research output: Contribution to journalArticle

  3. Microlaser-based contractility sensing in single cardiomyocytes and whole hearts

    Schubert, M., Woolfson, L., Barnard, I. R. M., Morton, A., Casement, B., Robertson, G. B., Miles, G. B., Pitt, S. J., Tucker, C. S. & Gather, M. C., 22 Jul 2019, Novel Biophotonics Techniques and Applications V. Amelink, A. & Nadkarni, S. K. (eds.). SPIE, 110750C. (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; vol. 11075).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  4. Editorial overview: Motor control systems of the spinal cord and hindbrain

    Miles, G. B. & Wyart, C., 1 Apr 2019, In : Current Opinion in Physiology. 8, p. iii-v

    Research output: Contribution to journalEditorial

  5. Pitx2 cholinergic interneurons are the source of C bouton synapses on brainstem motor neurons

    Rozani, I., Tsapara, G., Witts, E. C., Deaville, S. J., Miles, G. B. & Zagoraiou, L., 20 Mar 2019, In : Scientific Reports. 9, 13 p., 4936.

    Research output: Contribution to journalArticle

Related by journal

  1. Differential regulation of NMDA receptors by D-serine and glycine in mammalian spinal locomotor networks

    Acton, D. & Miles, G. B., 1 May 2017, In : Journal of Neurophysiology. 117, 5, p. 1877-1893

    Research output: Contribution to journalArticle

  2. Sodium pump regulation of locomotor control circuits

    Picton, L. D., Zhang, H. & Sillar, K. T., 4 Aug 2017, In : Journal of Neurophysiology. 118, 2, p. 1070-1081

    Research output: Contribution to journalArticle

ID: 251117784

Top