Skip to content

Research at St Andrews

Half-cell study of La and Ca doped strontium titanates anode for direct methane solid oxide fuel cell

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Author(s)

Pankaj Kr Tiwari, John T. S. Irvine, Suddhasatwa Basu

School/Research organisations

Abstract

One of the major advantages of Solid oxide fuel cell (SOFC) over other fuel cell is use of direct natural gas at high temperature without any external reformer. Conventional nickel-yttria stabilized zirconia (Ni-YSZ) composite anode provides excellent catalytic property, current collection and stability for H2 oxidation but it is not tolerant towards sulphur poisoning and also accelerates coke deposition in presence of methane fuel. It necessitates the use of alternate anode for direct hydrocarbon fuel. In the present work, attempts have been made to apply La and Ca doped A-site deficient SrTiO3 (LSCTA-) as potential anode for direct methane SOFC. Low catalytic activity of LSCTA- is improved by infiltration of Ni and CeO2 catalyst. Half cell (YSZ/4%Ni-6%CeO2-LSCTA-) provided 200 mW cm-2 maximum power density and regain its initial performance in H2 even after 6 h exposure to humidified CH4 at 800 °C.
Close

Details

Original languageEnglish
Title of host publication15th International Symposium on Solid Oxide Fuel Cells (SOFC-XV)
EditorsS. C. Singhal, T. Kawada
PublisherElectrochemical Society
Pages1195-1203
DOIs
Publication statusPublished - 23 Jul 2017
EventSOFC-XV: 15th International Symposium on Solid Oxide Fuel Cells July 23, 2017 - July 28, 2017 - Hollywood, United States
Duration: 23 Jul 201728 Jul 2017
Conference number: 15

Publication series

NameECS Transactions
PublisherElectrochemical Society
Number1
Volume78
ISSN (Print)1938-6737
ISSN (Electronic)1938-5862

Conference

ConferenceSOFC-XV: 15th International Symposium on Solid Oxide Fuel Cells July 23, 2017 - July 28, 2017
Abbreviated titleSOFC-XV
CountryUnited States
CityHollywood
Period23/07/1728/07/17

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Dec 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  2. Hexagonal perovskite related oxide ion conductor Ba3NbMoO8.5: phase transition, temperature evolution of the local structure and properties

    Chambers, M. S., McCombie, K. S., Auckett, J. E., McLaughlin, A. C., Irvine, J. T. S., Chater, P. A., Evans, J. S. O. & Evans, I. R., 28 Nov 2019, In : Journal of Materials Chemistry. 7, 44, p. 25503-25510 8 p.

    Research output: Contribution to journalArticle

  3. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 25 Nov 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

  4. Nanostructured carbons containing FeNi/NiFe2O4 supported over N-doped carbon nanofibers for oxygen reduction and evolution reactions

    Aziz, I., Lee, J. G., Duran, H., Kirchhoff, K., Baker, R. T., Irvine, J. T. S. & Arshad, S. N., 11 Nov 2019, In : RSC Advances. 9, 63, p. 36586-36599 14 p.

    Research output: Contribution to journalArticle

  5. B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D-T., Irvine, J., Duan, S. & Ni, J-P., 29 Oct 2019, In : Journal of Materials Chemistry. In press

    Research output: Contribution to journalArticle

ID: 251032235

Top