Skip to content

Research at St Andrews

Halogen bonding in mono- and dihydrated halobenzene

Research output: Contribution to journalArticlepeer-review

DOI

Open Access permissions

Open

Abstract

Density functional theory calculations were performed on halogen-bonded and hydrogen-bonded systems consisting of a halobenzene (XPh; X = F, Cl, Br, I, At) and one or two water molecules, using the M06-2X density functional with the 6-31+G(d) (for C, H, F, Cl, Br) and aug-cc-pVDZ-PP (for I, At) basis sets. The counterpoise procedure was performed to counteract the effect of basis set superposition error. The results show halogen bonds form in the XPh-H2O system when X > Cl. There is a trend towards stronger halogen bonding as the halogen group is descended, as assessed by interaction energy and X•••Ow internuclear separation (where Ow is the water oxygen). For all XPh-H2O systems hydrogen-bonded systems exist, containing a combination of CH•••Ow and OwHw•••X hydrogen bonds. For all systems except X=At the X•••Hw hydrogen-bonding interaction is stronger than the X•••Ow halogen bond. In the XPh-(H2O)2 system halogen bonds form only for X > Br. The two water molecules prefer to form a water dimer, either located around the C-H bond (for X = Br, At, and I) or located above the benzene ring (for all halogens). Thus, even in the absence of competing strong interactions, halogen bonds may not form for the lighter halogens due to (i) competition from cooperative weak interactions such as C-H•••O and OH•••X hydrogen bonds, or (ii) if the formation of the halogen bond would preclude the formation of a water dimer.
Close

Details

Original languageEnglish
JournalJournal of Computational Chemistry
VolumeEarly View
Early online date14 Dec 2018
DOIs
Publication statusE-pub ahead of print - 14 Dec 2018

    Research areas

  • Halogen bond, Hydrogen bond, Halobenzene, Density functional theory, M06-2X

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. A quinone based single-molecule switch as building block for molecular electronics

    Früchtl, H. A. & van Mourik, T., 21 Jan 2021, In: Physical Chemistry Chemical Physics. 23, 3, p. 1811-1814

    Research output: Contribution to journalArticlepeer-review

  2. Halogen-bonded guanine base pairs, quartets and ribbons

    Thornton, N. J. & van Mourik, T., 8 Sep 2020, In: International Journal of Molecular Sciences. 21, 18, 15 p., 6571.

    Research output: Contribution to journalArticlepeer-review

  3. A computational study of TyrGly hydration

    Hameed, R. & van Mourik, T., 25 Aug 2020, In: Computational and Theoretical Chemistry. In press, 113011.

    Research output: Contribution to journalArticlepeer-review

  4. Simulation of electrochemical properties of naturally occurring quinones

    Birkedal Kristensen, S., van Mourik, T., Brunn Pedersen, T., Laurids Sørensen, J. & Muff, J., 11 Aug 2020, In: Scientific Reports. 10, 13571.

    Research output: Contribution to journalArticlepeer-review

  5. Next generation QTAIM for scoring molecular wires in E-fields for molecular electronic devices

    Azizi, A., Momen, R., Fruchtl, H., van Mourik, T., Kirk, S. R. & Jenkins, S., 27 Dec 2019, In: Journal of Computational Chemistry. Early View

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Halogen bonding with the halogenabenzene bird structure, halobenzene and halocyclopentadiene

    Cates, E. L. & van Mourik, T., 15 Sep 2019, In: Journal of Computational Chemistry. 40, 24, p. 2111-2118

    Research output: Contribution to journalArticlepeer-review

  2. Next generation QTAIM for scoring molecular wires in E-fields for molecular electronic devices

    Azizi, A., Momen, R., Fruchtl, H., van Mourik, T., Kirk, S. R. & Jenkins, S., 27 Dec 2019, In: Journal of Computational Chemistry. Early View

    Research output: Contribution to journalArticlepeer-review

  3. The destabilization of hydrogen bonds in an external E-field for improved switch performance

    Xu, T., Momen, R., Azizi, A., van Mourik, T., Früchtl, H., Kirk, S. R. & Jenkins, S., 13 Apr 2019, In: Journal of Computational Chemistry. Early View

    Research output: Contribution to journalArticlepeer-review

  4. Corrigendum: Competition between hydrogen and halogen bonding in halogenated 1-methyluracil:water systems

    Hogan, S. W. L. & van Mourik, T., 5 May 2017, In: Journal of Computational Chemistry. 38, 12, p. 933 1 p.

    Research output: Contribution to journalArticlepeer-review

ID: 256101097

Top