Skip to content

Research at St Andrews

Handheld probe for quantitative micro-elastography

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

Qi Fang, Brooke Krajancich, Lixin Chin, Renate Zilkens, Andrea Curatolo, Luke Frewer, James D. Anstie, Philip Wijesinghe, Colin Hall, Benjamin F. Dessauvagie, Bruce Latham, Christobel M. Saunders, Brendan F. Kennedy

School/Research organisations

Abstract

Optical coherence elastography (OCE) has been proposed for a range of clinical applications. However, the majority of these studies have been performed using bulks, lab based imaging systems. A compact. handheld imaging probe would accelerate clinical translation, however, to date. tins had been inhibited by the slow scan rates of compact devices and the motion artifact induced by the user's hand. In this paper, we present a proof-of-concept. handheld quantitative micro-elastography (QME) probe capable of scanning a 6 x 6 x 1 mm volume of tissue in 3.4 seconds. This handheld probe is enabled by a novel QME acquisition protocol that incorporates a custom bidirectional scan pattern driving a microelectromechanical system (MEMS) scanner, synchronized with the sample deformation induced by an annular PZT actuator. The custom scan pattern reduces the total acquisition time and the time difference between B-scans used to generate displacement maps. minimizing the impact of motion artifact. We test the feasibility of the handheld QME probe on a tissue-mimicking silicone phantom, demonstrating comparable image quality to a bench-mounted setup. In addition, we present the first handheld QME scans performed on human breast tissue specimens. For each specimen, quantitative micro-elastograms are co-registered with, and validated by, histology, demonstrating the ability-to distinguish stiff cancerous tissue from surrounding soft benign tissue.

Close

Details

Original languageEnglish
Pages (from-to)4034-4049
Number of pages16
JournalBiomedical Optics Express
Volume10
Issue number8
Early online date16 Jul 2019
DOIs
Publication statusPublished - 1 Aug 2019

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Optimal compressive multiphoton imaging at depth using single-pixel detection

    Wijesinghe, P., Escobet Montalban, A., Chen, M., Munro, P. R. T. & Dholakia, K., 15 Oct 2019, In : Optics Letters. 44, 20, p. 4981-4984 4 p.

    Research output: Contribution to journalLetter

  2. Finger-mounted quantitative micro-elastography

    Sanderson, R. W., Curatolo, A., Wijesinghe, P., Chin, L. & Kennedy, B. F., 1 Apr 2019, In : Biomedical Optics Express. 10, 4, p. 1760-1773 14 p.

    Research output: Contribution to journalArticle

  3. Analysis of spatial resolution in phase-sensitive compression optical coherence elastography

    Hepburn, M. S., Wijesinghe, P., Chin, L. & Kennedy, B. F., 28 Feb 2019, In : Biomedical Optics Express. 10, 3, p. 1496-1513 18 p.

    Research output: Contribution to journalArticle

  4. Wide-field multiphoton imaging with TRAFIX

    Escobet-Montalbán, A., Wijesinghe, P., Chen, M. & Dholakia, K., 22 Feb 2019, Multiphoton Microscopy in the Biomedical Sciences XIX. Periasamy, A., So, P. T. C. & König, K. (eds.). Society of Photo-Optical Instrumentation Engineers, p. 49 9 p. 10882G. (Proceedings of SPIE; vol. 10882).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  5. Light sheet microscopy with acoustic sample confinement

    Yang, Z., Cole, K. L. H., Qiu, Y., Somorjai, I. M. L., Wijesinghe, P., Nylk, J., Cochran, S., Spalding, G. C., Lyons, D. A. & Dholakia, K., 8 Feb 2019, In : Nature Communications. 10, 8 p., 669.

    Research output: Contribution to journalArticle

Related by journal

  1. Analysis of spatial resolution in phase-sensitive compression optical coherence elastography

    Hepburn, M. S., Wijesinghe, P., Chin, L. & Kennedy, B. F., 28 Feb 2019, In : Biomedical Optics Express. 10, 3, p. 1496-1513 18 p.

    Research output: Contribution to journalArticle

  2. Finger-mounted quantitative micro-elastography

    Sanderson, R. W., Curatolo, A., Wijesinghe, P., Chin, L. & Kennedy, B. F., 1 Apr 2019, In : Biomedical Optics Express. 10, 4, p. 1760-1773 14 p.

    Research output: Contribution to journalArticle

  3. Fast volume-scanning light sheet microscopy reveals transient neuronal events

    Haslehurst, P., Yang, Z., Dholakia, K. & Emptage, N., 1 May 2018, In : Biomedical Optics Express. 9, 5, p. 2154-2167

    Research output: Contribution to journalArticle

  4. Multimode fibre based imaging for optically cleared samples

    Gusachenko, I., Nylk, J., Tello, J. A. & Dholakia, K., 1 Nov 2017, In : Biomedical Optics Express. 8, 11, p. 5179-5190

    Research output: Contribution to journalArticle

ID: 260598099

Top