Skip to content

Research at St Andrews

Heat-inactivation renders sputum safe and preserves Mycobacterium tuberculosis RNA for downstream molecular tests

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Abstract

The World Health Organization End tuberculosis (TB) strategy has called for development of- and increased access to- effective tools for diagnosis and treatment of TB disease. Mycobacterium tuberculosis (Mtb), the causative agent of TB is categorized as highly infectious agent. Consequently, diagnostic tests that involve comprehensive manipulation of specimens from presumed tuberculosis cases must be performed in a category three laboratory. We have evaluated the use of heat-inactivation to render TB samples safe to work with whilst preserving RNA for downstream molecular tests. Using Mycobacterium bovis Bacillus Calmette Guérin (BCG) cultures and TB positive sputa we show that boiling for 20 min at 80-, 85-, and 95- ºC inactivates all Mtb bacilli. The efficiency of inactivation was verified by culturing heat-treated and untreated (live) fractions of BCG and TB sputum for 42 days. No growth was observed in the cultures of heat-treated samples. In contrast the optical density of untreated BCG in Middlebrook 7H9 broth rose from 0.04 to 0.85 and the untreated sputa flagged positive at 3 days of incubation in Mycobacterium Growth Indicator Tube. Quantification of reference genes, 16S rRNA, tmRNA, pre-16S rRNA and rpoB by Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) showed minimal loss in estimated bacterial load. The loss was RNA-species dependent, <1log10, 1.1log10, 1.3log10 and 2.4log10 estimated CFU/ml for 16S rRNA, tmRNA, pre-16S and rpoB respectively. The RNA loss was independent of inactivation temperature. These findings show that heat-inactivation could obviate the need for category three laboratory to perform RNA-based testing of TB samples.
Close

Details

Original languageEnglish
Article numbere01778-18
Number of pages8
JournalJournal of Clinical Microbiology
Volume57
Issue number4
Early online date28 Mar 2019
DOIs
Publication statusPublished - Mar 2019

    Research areas

  • Tuberculosis, Diagnosis, Viable count

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Model-based relationship between the molecular bacterial load assay and time-to-positivity in liquid culture

    Svensson, R. J., Sabiiti, W., Kibiki, G. S., Ntinginya, N. E., Bhatt, N., Davies, G., Gillespie, S. H. & Simonsson, U. S. H., 29 Jul 2019, In : Antimicrobial Agents and Chemotherapy. Early

    Research output: Contribution to journalArticle

  2. Molecular bacterial load assay (MBLA) concurs with culture on the NaOH-induced Mycobacterium tuberculosis loss of viability

    Mtafya, B., Sabiiti, W., Sabi, I., John, J., Sichone, E., Ntinginya, N. E. & Gillespie, S. H., 25 Jun 2019, In : Journal of Clinical Microbiology. 57, e01992-18.

    Research output: Contribution to journalArticle

  3. OMNIgene.SPUTUM suppresses contaminants whilst maintaining Mycobacterium tuberculosis viability and obviates cold-chain transport

    Azam, K., Cadir, N., Madeira, C., Gillespie, S. H. & Sabiiti, W., 16 Feb 2018, In : ERJ Open Research. 4, 8 p., 00074-2017.

    Research output: Contribution to journalArticle

  4. Mycobacterial load assay

    Gillespie, S. H., Sabiiti, W. & Oravcova, K., 2017, Diagnostic Bacteriology: Methods and Protocols. Bishop-Lilly, K. A. (ed.). New York, NY: Humana Press/Springer, p. 89-105 17 p. (Methods in Molecular Biology; vol. 1616).

    Research output: Chapter in Book/Report/Conference proceedingChapter

  5. Optimising molecular diagnostic capacity for effective control of tuberculosis in high-burden settings

    Sabiiti, W., Mtafya, B., Kuchaka, D., Azam, K., Viegas, S., Mdolo, A., Farmer, E., Khonga, M., Evangelopoulos, D., Honeyborne, I., Rachow, A., Heinrich, N., Ntinginya, N. E., Bhatt, N., Davies, G. R., Jani, I. V., McHugh, T. D., Kibiki, G., Hoelscher, M., Gillespie, S. H. & 1 othersPANBIOME (Pan-African Biomarker Expansion Programme) consortium, 1 Aug 2016, In : International Journal of Tuberculosis and Lung Disease. 20, 8, p. 1004-1009

    Research output: Contribution to journalArticle

Related by journal

  1. Molecular bacterial load assay (MBLA) concurs with culture on the NaOH-induced Mycobacterium tuberculosis loss of viability

    Mtafya, B., Sabiiti, W., Sabi, I., John, J., Sichone, E., Ntinginya, N. E. & Gillespie, S. H., 25 Jun 2019, In : Journal of Clinical Microbiology. 57, e01992-18.

    Research output: Contribution to journalArticle

  2. Development of a multilocus sequence typing scheme for the molecular typing of Mycoplasma pneumoniae

    Brown, R. J., Holden, M., Spiller, O. B. & Chalker, V. J., Oct 2015, In : Journal of Clinical Microbiology. 53, 10, p. 3195-3203

    Research output: Contribution to journalArticle

  3. Whole-genome sequencing confirms that Burkholderia pseudomallei multilocus sequence types common to both Cambodia and Australia are due to homoplasy

    De Smet, B., Sarovich, D. S., Price, E. P., Mayo, M., Theobald, V., Kham, C., Heng, S., Phe, T., Holden, M. T. G., Parkhill, J., Peacock, S. J., Spratt, B. G., Jacobs, J., Vandamme, P. & Currie, B. J., Jan 2015, In : Journal of Clinical Microbiology. 53, 1, p. 323-326

    Research output: Contribution to journalArticle

  4. Micro-evolution of Burkholderia pseudomallei during an acute infection

    Limmathurotsakul, D., Holden, M. T. G., Coupland, P., Price, E. P., Chantratita, N., Wuthiekanun, V., Amornchai, P., Parkhill, J. & Peacock, S. J., 2014, In : Journal of Clinical Microbiology.

    Research output: Contribution to journalArticle

ID: 257529798