Skip to content

Research at St Andrews

High resolution three-dimensional beam radiation pattern of harbour porpoise clicks with implications for passive acoustic monitoring

Research output: Contribution to journalArticlepeer-review

DOI

Open Access permissions

Open

Abstract

The source properties and radiation patterns of animal vocalisations define, along with propagation and noise conditions, the active space in which these vocalisations can be detected by conspecifics, predators, prey, and by passive acoustic monitoring (PAM). This study reports the 4π (360° horizontal and vertical) beam profile of a free-swimming, trained harbour porpoise measured using a 27-element hydrophone array. The forward echolocation beam is highly directional, as predicted by a piston model, and is consistent with previous measurements. However, at off-axis angles greater than ±30°, the beam attenuates more rapidly than the piston model and no side lobes are present. A diffuse back beam is also present with levels about −30 dB relative to the source level. In PAM, up to 50% of detections can be from portions of the beam profile with distorted click spectra, although this drops substantially for higher detection thresholds. Simulations of the probability of acoustically detecting a harbour porpoise show that a traditional piston model can underestimate the probability of detection compared to the actual three-dimensional radiation pattern documented here. This highlights the importance of empirical 4π measurements of beam profiles of toothed whales, both to improve understanding of toothed whale biology and to inform PAM.
Close

Details

Original languageEnglish
Pages (from-to)4175-4188
Number of pages14
JournalJournal of the Acoustical Society of America
Volume147
Issue number6
DOIs
Publication statusPublished - 25 Jun 2020

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Publisher Correction: Deep neural networks for automated detection of marine mammal species (Scientific Reports, (2020), 10, 1, (607), 10.1038/s41598-020-57549-y)

    Shiu, Y., Palmer, K. J., Roch, M. A., Fleishman, E., Liu, X., Nosal, E. M., Helble, T., Cholewiak, D., Gillespie, D. & Klinck, H., 30 Jun 2020, In: Scientific Reports. 10, 11000.

    Research output: Contribution to journalComment/debatepeer-review

  2. Passive acoustic methods for tracking the 3D movements of small cetaceans around marine structures

    Gillespie, D., Palmer, L., MacAulay, J., Sparling, C. & Hastie, G., 29 May 2020, In: PLoS ONE. 15, 5, 16 p., e0229058.

    Research output: Contribution to journalArticlepeer-review

  3. Learning deep models from synthetic data for extracting dolphin whistle contours

    Li, P., Liu, X., Palmer, K., Fleishman, E., Gillespie, D. M., Nosal, E-M., Shiu, Y., Klinck, H., Cholewiak, D., Helble, T. & Roch, M., 20 Mar 2020, (Accepted/In press) International Joint Conference on Neural Networks (IJCNN). IEEE Computer Society, 10 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  4. Deep neural networks for automated detection of marine mammal species

    Shiu, Y., Palmer, K., Roch, M., Fleishman, E., Liu, X., Nosal, E-M., Helble, T., Cholewiak, D., Gillespie, D. M. & Klinck, H., 17 Jan 2020, In: Scientific Reports. 10, 12 p., 607.

    Research output: Contribution to journalArticlepeer-review

  5. Time of arrival difference estimation for narrow band high frequency echolocation clicks

    Gillespie, D. & Macaulay, J., Oct 2019, In: Journal of the Acoustical Society of America. 146, 4, p. EL387-EL392 7 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Acoustic detection range and population density of Cuvier's beaked whales estimated from near-surface hydrophones

    Barlow, J., Fregosi, S., Thomas, L., Harris, D. & Griffiths, E. T., 5 Jan 2021, In: Journal of the Acoustical Society of America. 149, 1, p. 111-125 15 p.

    Research output: Contribution to journalArticlepeer-review

  2. Modeling potential masking of echolocating sperm whales exposed to continuous 1–2 kHz naval sonar

    von Benda-Beckmann, A. M., Isojunno, S., Zandvliet, M., Ainslie, M. A., Wensveen, P. J., Tyack, P. L., Kvadsheim, P. H., Lam, F. P. A. & Miller, P. J. O., 30 Apr 2021, In: Journal of the Acoustical Society of America. 149, 4, p. 2908-2925 18 p.

    Research output: Contribution to journalArticlepeer-review

  3. Animal-borne tags provide insights into the acoustic communication of southern right whales (Eubalaena australis) on the calving grounds

    Dombroski, J. R. G., Parks, S. E., Flores, P. A. C., Martín López, L. M., Shorter, K. A. & Groch, K. R., Jun 2020, In: Journal of the Acoustical Society of America. 147, 6, p. EL498-EL503

    Research output: Contribution to journalArticlepeer-review

  4. Comparison of fin whale 20 Hz call detections by deep-water mobile autonomous and stationary recorders

    Fregosi, S., Harris, D. V., Matsumoto, H., Mellinger, D. K., Negretti, C., Moretti, D. J., Martin, S. W., Matsuyama, B., Dugan, P. J. & Klinck, H., 10 Feb 2020, In: Journal of the Acoustical Society of America. 147, 2, p. 961-977 17 p.

    Research output: Contribution to journalArticlepeer-review

  5. Estimating the effects of pile driving sounds on seals: pitfalls and possibilities

    Whyte, K. F., Russell, D. JF., Sparling, C. E., Binnerts, B. & Hastie, G. D., Jun 2020, In: Journal of the Acoustical Society of America. 147, 6, p. 3948-3958

    Research output: Contribution to journalArticlepeer-review

ID: 268707015

Top