Skip to content

Research at St Andrews

Highly efficient fullerene and non-fullerene based ternary organic solar cells incorporating a new tetrathiocin-cored semiconductor

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

Lethy Krishnan Jagadamma, Rupert G. D. Taylor, Alexander L. Kanibolotsky, Muhammad Tariq Sajjad, Iain A. Wright, Peter N. Horton, Simon J. Coles, Ifor D. W. Samuel, Peter J. Skabara

School/Research organisations

Abstract

A new dual-chain oligothiophene-based organic semiconductor, EH-5T-TTC, is presented. The molecule contains two conjugated chains linked by a fused tetrathiocin core. X-ray crystallography reveals a boat conformation within the 8-membered sulfur heterocycle core and extensive π–π and intermolecular sulfur–sulfur interactions in the bulk, leading to a 2-dimensional structure. This unusual molecule has been studied as a ternary component in organic solar cell blends containing the electron donor PTB7-Th and both fullerene (PC71BM) and non-fullerene acceptors ITIC and EH-IDTBR. By incorporating EH-5T-TTC as a ternary component, the power conversion efficiency of the binary blends containing non-fullerene acceptor increases by 17% (from 7.8% to 9.2%) and by 85% for the binary blend with fullerene acceptor (from 3.3% to 6.3%). Detailed characterisation of the ternary blend systems implies that the ternary small molecule EH-5T-TTC functions differently in polymer:fullerene and polymer:non-fullerene blends and has dual functions of morphology modification and complementary spectral absorption.
Close

Details

Original languageEnglish
Pages (from-to)2087-2099
Number of pages13
JournalSustainable Energy & Fuels
Volume3
Issue number8
Early online date18 Jun 2019
DOIs
Publication statusPublished - 1 Jul 2019

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Interface limited hole extraction from methylammonium lead iodide films

    Blaszczyk, O., Krishnan Jagadamma, L., Ruseckas, A., Sajjad, M. T., Zhang, Y. & Samuel, I. D. W., 9 Dec 2019, In : Materials Horizons. Advance Article

    Research output: Contribution to journalArticle

  2. BODIPY derivatives with near infra-red absorption as small molecule donors for bulk heterojunction solar cells

    Marques dos Santos, J., Jagadamma, L. K., Latif, N. M., Ruseckas, A., Samuel, I. D. W. & Cooke, G., 16 May 2019, In : RSC Advances. 9, 27, p. 15410-15423 14 p.

    Research output: Contribution to journalArticle

  3. Probing the structure-property-composition relationship in organic-inorganic tri-halide perovskites

    Payne, J. L., Ni, C., Harwell, J. R., Krishnan Jagadamma, L., McDonald, C., Mariotti, D., Samuel, I. D. W. & Irvine, J. T. S., 16 Jul 2018, In : Physical Chemistry Chemical Physics. In press

    Research output: Contribution to journalArticle

Related by journal

  1. Simultaneous CO2 removal from biomass conversion product gas and carbon nanotube formation via catalytic chemical vapour deposition

    Fuente-Cuesta, A., Savaniu, C., Carins, G. M., Miller, D. N., Lenzi, M. & Irvine, J. T. S., 1 Oct 2019, In : Sustainable Energy and Fuels. 3, 10, p. 2604-2614 11 p.

    Research output: Contribution to journalArticle

  2. Using cellulose polymorphs for enhanced hydrogen production from photocatalytic reforming

    Chang, C., Skillen, N., Nagarajan, S., Ralphs, K., Irvine, J. T. S., Lawton, L. & Robertson, P. K. J., 1 Aug 2019, In : Sustainable Energy & Fuels. 3, 8, p. 1971-1975 5 p.

    Research output: Contribution to journalArticle

ID: 260483584

Top