Skip to content

Research at St Andrews

Identification of a novel ligand binding residue Arg38(1.35) in the human gonadotropin-releasing hormone receptor

Research output: Contribution to journalArticlepeer-review



Alan J. Stewart, Robin Sellar, Donald J. Wilson, Robert P. Millar, Zhi-Liang Lu

School/Research organisations


Delineation of peptide ligand binding sites is of fundamental importance in rational drug design and in understanding ligand-induced receptor activation. Molecular modeling and ligand docking to previously experimentally identified binding sites revealed a putative novel interaction between the C terminus of gonadotropin-releasing hormone (GnRH) and Arg38(1.35), located at the extracellular end of transmembrane domain 1 of the human GnRH receptor. Mutation of Arg38(1.35) to alanine resulted in 989- and 1268-fold reduction in affinity for GnRH I and GnRH II, respectively, the two endogenous ligands. Conservative mutation of Arg38(1.35) to lysine had less effect, giving reduced affinities of GnRH I and GnRH II by 24- and 54-fold, respectively. To test whether Arg38(1.35) interacts with the C-terminal Gly10-NH2 of GnRH, binding of GnRH analogs with substitution of the C-terminal glycinamide with ethylamide ([Pro9-NHEt]GnRH) was studied with wild-type and Arg38(1.35) mutant receptors. Mutation of Arg38(1.35) to lysine or alanine had much smaller effect on receptor affinity for [Pro9-NHEt]GnRH analogs and no effect on binding affinity of peptide antagonist cetrorelix. In parallel with the decreased affinity, the mutants also gave a decreased potency to GnRH-elicited inositol phosphate (IP) responses. The mutant receptors had effects on [Pro9-NHEt]GnRH-elicited IP responses similar to that of the parent GnRHs. These findings indicate that Arg38(1.35) of the GnRH receptor is essential for high-affinity binding of GnRH agonists and stabilizing the receptor active conformation. The mutagenesis results support the prediction of molecular modeling that Arg38(1.35) interacts with the C-terminal glycinamide and probably forms hydrogen bonds with the backbone carbonyl of Pro9 and Gly10-NH2.



Original languageEnglish
Pages (from-to)75-81
Number of pages7
JournalMolecular Pharmacology
Issue number1
Early online date17 Oct 2007
Publication statusPublished - Jan 2008

    Research areas

  • Protein-coupled-receptor, Human oxytocin receptor, GNRH receptor, Agonist binding, 7-transmembrane receptors, Muscarinic receptor, Antagonist binding, Affinity, Cells, Switch

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Albumin-mediated alteration of plasma zinc speciation by fatty acids modulates blood clotting in type-2 diabetes

    Sobczak, A. I. S., Katundu, K. G. H., Phoenix, F. A., Khazaipoul, S., Yu, R., Lampiao, F., Stefanowicz, F., Blindauer, C. A., Pitt, S. J., Smith, T. K., Ajjan, R. A. & Stewart, A. J., 21 Mar 2021, In: Chemical Science. 12, 11, p. 4079-4093 15 p.

    Research output: Contribution to journalArticlepeer-review

  2. Ablation of Enpp6 results in transient bone hypomineralization

    Dillon, S., Suchacki, K., Hsu, S-N., Stephen, L. A., Wang, R., Cawthorn, W. P., Stewart, A. J., Nudelman, F., Morton, N. M. & Farquharson, C., Feb 2021, In: JBMR Plus. 5, 2, 11 p., e10439.

    Research output: Contribution to journalArticlepeer-review

  3. Atherosclerosis linked to aberrant amino acid metabolism and immunosuppressive amino acid catabolizing enzymes

    Zaric, B. L., Radovanovic, J. N., Gluvic, Z., Stewart, A. J., Essak, M., Motwalli, O., Gojobori, T. & Isenovic, E. R., 28 Sep 2020, In: Frontiers in Immunology. 11, 27 p., 551758.

    Research output: Contribution to journalReview articlepeer-review

Related by journal

  1. Potentiation of P2Y receptors by physiological elevations of extracellular K+ via a mechanism independent of Ca2+ influx.

    Pitt, S. J., Martinez-Pinna, J., Barnard, E. A. & Mahaut-Smith, M. P., 2005, In: Molecular Pharmacology. 67, 5, p. 1705-13

    Research output: Contribution to journalArticlepeer-review

ID: 434107