Skip to content

Research at St Andrews

Identifying long cycles in finite alternating and symmetric groups acting on subsets

Research output: Contribution to journalArticle

Author(s)

Stephen Alexander Linton, Alice C. Niemeyer, Cheryl E. Praeger

School/Research organisations

Abstract

Let H be a permutation group on a set Λ, which is permutationally isomorphic to a finite alternating or symmetric group An or Sn acting on the k-element subsets of points from {1, . . . , n}, for some arbitrary but fixed k. Suppose moreover that no isomorphism with this action is known. We show that key elements of H needed to construct such an isomorphism ϕ, such as those whose image under ϕ is an n-cycle or (n − 1)-cycle, can be recognised with high probability by the lengths of just four of their cycles in Λ.

Close

Details

Original languageEnglish
Pages (from-to)117-149
JournalJournal of Algebra Combinatorics Discrete Structures and Applications
Volume2
Issue number2
DOIs
Publication statusPublished - May 2015

    Research areas

  • Symmetric and alternating groups in subset actions, Large base permutation groups, Finding long cycles

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. GAP – Groups, Algorithms, and Programming, Version 4.10.2

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 19 Jun 2019

    Research output: Non-textual formSoftware

  2. GAP – Groups, Algorithms, and Programming, Version 4.10.1

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 23 Feb 2019

    Research output: Non-textual formSoftware

  3. GAP – Groups, Algorithms, and Programming, Version 4.10.0

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 1 Nov 2018

    Research output: Non-textual formSoftware

  4. GAP – Groups, Algorithms, and Programming, Version 4.9.3

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 5 Sep 2018

    Research output: Non-textual formSoftware

  5. PatternClass Version 2.4.2: A permutation pattern class package (GAP package)

    Hoffmann, R., Linton, S. & Albert, M., 24 Jul 2018

    Research output: Non-textual formSoftware

ID: 192859369

Top