Skip to content

Research at St Andrews

Impeded inverse energy transfer in the Charney--Hasegawa--Mima model of quasi-geostrophic flows

Research output: Contribution to journalArticle

Author(s)

School/Research organisations

Abstract

The behaviour of turbulent flows within the single-layer quasi-geostrophic (Charney-Hasegawa-Mima) model is shown to be strongly dependent on the Rossby deformation wavenumber lambda (or free-surface elasticity). Herein, we derive a bound oil the inverse energy transfer, specifically on the growth rate dl/dt of the characteristic length scale e representing the energy centroid. It is found that dl/dt <= 2 parallel to q parallel to(infinity)/(l(s)lambda(2)), where parallel to q parallel to(infinity) is the supremum of the potential vorticity and l(s) represents the potential enstrophy centroid of the reservoir, both invariant. This result implies that in the potential-energy-dominated regime (l >= l(s) >> lambda(-1)) the inverse energy transfer is strongly impeded, in the sense that under the usual time scale no significant transfer of energy to larger scales occurs. The physical implication is that the elasticity of the free surface impedes turbulent energy transfer in wavenumber space, effectively rendering large-scale vortices long-lived and inactive. Results from numerical simulations of forced-dissipative turbulence confirm this prediction.

Close

Details

Original languageEnglish
Pages (from-to)435-443
Number of pages9
JournalJournal of Fluid Mechanics
Volume551
DOIs
Publication statusPublished - 25 Mar 2006

    Research areas

  • Drift-wave turbulence, 2-dimensional turbulence, Spectral distribution, Vortices, Cascade, Fluid, Plane

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Energy dissipation and resolution of steep gradients in one-dimensional Burgers flows

    Tran, C. V. & Dritschel, D. G., Mar 2010, In : Physics of Fluids. 22, 3, 7 p., 037102.

    Research output: Contribution to journalArticle

  2. Late time evolution of unforced inviscid two-dimensional turbulence

    Dritschel, D. G., Scott, R. K., Macaskill, C., Gottwald, G. & Tran, C. V., 2009, In : Journal of Fluid Mechanics. 640, p. 215-233 19 p.

    Research output: Contribution to journalArticle

  3. Unifying scaling theory for vortex dynamics in two-dimensional turbulence

    Dritschel, D. G., Scott, R. K., Macaskill, C., Gottwald, G. A. & Tran, C. V., 29 Aug 2008, In : Physical Review Letters. 101, 9, 4 p., 094501.

    Research output: Contribution to journalArticle

  4. Revisiting Batchelor's theory of two-dimensional turbulence

    Dritschel, D. G., Tran, C. V. & Scott, R. K., 25 Nov 2007, In : Journal of Fluid Mechanics. 591, p. 379-391 13 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Journal of Fluid Mechanics (Journal)

    David Gerard Dritschel (Editor)
    2005 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. On the regularity of the Green-Naghdi equations for a rotating shallow fluid layer

    Dritschel, D. G. & Jalali, M. R., 25 Apr 2019, In : Journal of Fluid Mechanics. 865, p. 100-136

    Research output: Contribution to journalArticle

  2. Scale-invariant singularity of the surface quasigeostrophic patch

    Scott, R. K. & Dritschel, D. G., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, 12 p., R2.

    Research output: Contribution to journalArticle

  3. The stability and nonlinear evolution of quasi-geostrophic toroidal vortices

    Reinaud, J. N. & Dritschel, D. G., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, p. 60-78

    Research output: Contribution to journalArticle

  4. Three-dimensional quasi-geostrophic vortex equilibria with m−fold symmetry

    Reinaud, J. N., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, p. 32-59

    Research output: Contribution to journalArticle

ID: 313539