Skip to content

Research at St Andrews

Imprint of climate and climate change in alluvial riverbeds: Continental United States, 1950-2011

Research output: Contribution to journalArticle


Open Access permissions



Louise Jeanne Elizabeth Slater, Michael Bliss Singer

School/Research organisations


Alluvial riverbed elevation responds to the balance between sediment supply and transport capacity, which is largely dependent on climate and its translation into fluvial discharge. We examine these relations using U.S. Geological Survey streamflow and channel measurements in conjunction with basin characteristics for 915 reference ("least disturbed") measurement stations across the conterminous United States for the period A.D. 1950–2011. We find that (1) 68% of stations have bed elevation change (BEC) trends (p < 0.05) with median values of +0.5 cm/yr for aggradation and –0.6 cm/yr for degradation, with no obvious relation to drainage basin structure, physiography, or lithology; (2) BEC correlates with drainage basin area; (3) high-flow variability (Q90/Q50, where Q is discharge and 90 and 50 are annual flow percentiles) translates directly into the magnitude, though not the direction, of BEC, after accounting for the scale dependence; (4) Q90/Q50 declines systematically from dry to wet climates, producing disproportionately high rates of BEC in drier regions; and (5) marked increases in precipitation and streamflow occurred disproportionately at dry sites, while streamflow declined disproportionately at wet sites. Climatic shifts in streamflow have the potential to increase/decrease sediment flux and thus affect riverbed elevation by altering flood frequency. These unforeseen responses of bed elevation to climate and climate change have important implications for sediment budgets, longitudinal profiles, ecology, and river management.


Original languageEnglish
Pages (from-to)595-598
Issue number5
Early online date18 Mar 2013
Publication statusPublished - May 2013

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by journal

  1. Geology (Journal)

    Chris Hawkesworth (Member of editorial board)

    Activity: Publication peer-review and editorial work typesEditor of research journal

  2. Geology (Journal)

    Michael Ian Bird (Member of editorial board)
    2000 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Insights into past ocean proxies from micron-scale mapping of sulfur species in carbonates

    Rose, C. V., Webb, S. M., Newville, M., Lanzirotti, A., Richardson, J. A., Tosca, N. J., Catalano, J. G., Bradley, A. S. & Fike, D. A., 1 Sep 2019, In : Geology. 47, 9, p. 833-837 833.

    Research output: Contribution to journalArticle

  2. Climatic control on Icelandic volcanic activity during the mid-Holocene

    Swindles, G. T., Watson, E. J., Savov, I. P., Lawson, I. T., Schmidt, A., Hooper, A., Cooper, C. L., Connor, C. B., Gloor, M. & Carrivick, J. L., Jan 2018, In : Geology. 46, 1, p. 47-50 4 p.

    Research output: Contribution to journalArticle

  3. Warm and cold wet-states in the western United States during the Pliocene-Pleistocene

    Ibarra, D., Oster, J., Winnick, M., Caves Rugenstein, J., Byrne, M. P. & Chamberlain, P., 15 Feb 2018, In : Geology. 46, 4, p. 355-358 4 p.

    Research output: Contribution to journalArticle

  4. Evidence for melting mud in Earth's mantle from extreme oxygen isotope signatures in zircon

    Edinburgh Ion Microprobe Facility (EIMF), Spencer, C. J., Cavosie, A. J., Raub, T. D., Rollinson, H., Jeon, H., Searle, M. P., Miller, J. A., McDonald, B. J. & Evans, N. J., 1 Nov 2017, In : Geology. 45, 11, p. 975-978 4 p.

    Research output: Contribution to journalArticle

  5. Internal dynamics condition centennial-scale oscillations in marinebased ice-stream retreat

    Smedley, R. K., Chiverrell, R. C., Ballantyne, C. K., Burke, M. J., Clark, C. D., Duller, G. A. T., Fabel, D., McCarroll, D., Scourse, J. D., Small, D. & Thomas, G. S. P., Jul 2017, In : Geology. 45, 9, p. 787-790 4 p.

    Research output: Contribution to journalArticle

ID: 20821714