Skip to content

Research at St Andrews

Improvement of the electrochemical properties of novel solid oxide fuel cell anodes, La0.75Sr0.25Cr0.5Mn0.5O3−δ and La4Sr8Ti11Mn0.5Ga0.5O37.5−δ, using Cu–YSZ-based cermets

Research output: Contribution to journalArticle

Author(s)

P Núñez, JC Ruiz-Morales, J Canales-Vázquez, D Marrero-López, John Thomas Sirr Irvine

School/Research organisations

Abstract

A Cu-metal-based cermet was used to improve the electrochemical properties of two novel oxide-based systems with intrinsic low electronic conductivity such as La0.75Sr0.25Cr0.5Mn0.5O3-delta (LSCM) and La4Sr8Ti11Mn0.5Ga0.5O37.5-delta (LSTMG). The introduction of Cu results in a marked improvement of the polarisation resistance values and hence in the performance. The best results correspond to the addition of similar to 15% of CuO. In both systems, the polarisation resistances were improved by a least a factor of 2. Despite there are reports claiming that the CuO-zirconia-based systems exhibit catalytic activity, such an improvement seems to be mainly related to the capability of CuO as a sintering agent, helping to bridge electrode particles together, creating new electronic paths and thus effectively increasing the triple phase boundary through the whole electrode material. (C) 2007 Published by Elsevier Ltd.

Close

Details

Original languageEnglish
Pages (from-to)7217-7225
Number of pages9
JournalElectrochimica Acta
Volume52
DOIs
Publication statusPublished - Sep 2007

    Research areas

  • LSCM, LSTMG, anode, solid oxide fuel cell, polarisation, 13-WEEK INHALATION EXPOSURE, SUPPORTED COPPER-CATALYSTS, METHANOL SYNTHESIS, ZIRCONIA MORPHOLOGY, OXYGEN VACANCY, H-2 OXIDATION, PART I, TEMPERATURE, CO, ELECTRODE

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Apr 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  2. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 14 Aug 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

  3. Nanostructured perovskite solar cells

    McDonald, C., Ni, C., Maguire, P., Connor, P., Irvine, J. T. S., Mariotti, D. & Svrcek, V., 18 Oct 2019, In : Nanomaterials. 9, 10, 28 p., 1481.

    Research output: Contribution to journalArticle

  4. Enhanced cycling performance of magnesium doped lithium cobalt phosphate

    Kim, E. J., Miller, D., Irvine, J. T. S. & Armstrong, A. R., 26 Sep 2019, In : ChemElectroChem. 6, 18

    Research output: Contribution to journalArticle

  5. Insight into graphite oxidation in a NiO-based hybrid direct carbon fuel cell

    Jiang, C., Cui, C., Ma, J. & Irvine, J. T. S., 23 Sep 2019, In : International Journal of Hydrogen Energy. In press

    Research output: Contribution to journalArticle

Related by journal

  1. Electrical reduction of perovskite electrodes for accelerating exsolution of nanoparticles

    Chanthanumataporn, M., Hui, J., Yue, X., Kakinuma, K., Irvine, J. T. S. & Hanamura, K., 20 May 2019, In : Electrochimica Acta. 306, p. 159-166 8 p.

    Research output: Contribution to journalArticle

  2. Numerical modeling of nickel-infiltrated gadolinium-doped ceria electrodes reconstructed with focused ion beam tomography

    Kishimoto, M., Lomberg, M., Ruiz-Trejo, E. & Brandon, N. P., 1 Feb 2016, In : Electrochimica Acta. 190, p. 178-185 8 p.

    Research output: Contribution to journalArticle

  3. Electrical conductivity and redox stability of La2Mo2-xWxO9 materials

    Marrero-Lopez, D., Canales-Vazquez, J., Ruiz-Morales, J. C., Irvine, J. T. S. & Nunez, R., 10 Aug 2005, In : Electrochimica Acta. 50, p. 4385-4395 11 p.

    Research output: Contribution to journalArticle

  4. Characterization of solid polymer electrolytes based on poly (trimethylenecarbonate) and lithium tetrafluoroborate

    Silva, M. M., Barros, S. C., Smith, M. J. & MacCallum, J. R., 15 May 2004, In : Electrochimica Acta. 49, p. 1887-1891 5 p.

    Research output: Contribution to journalArticle

ID: 406383

Top