Skip to content

Research at St Andrews

Infiltrated La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3 based anodes for all ceramic and metal supported solid oxide fuel cells

Research output: Contribution to journalArticle

Author(s)

Jimmi Nielsen, Åsa H. Persson, Bhaskar R. Sudireddy, John T. S. Irvine, Karl Thydén

School/Research organisations

Abstract

For improved robustness, durability and to avoid severe processing challenges alternatives to the Ni:YSZ composite electrode is highly desirable. The Ni:YSZ composite electrode is conventionally used for solid oxide fuel cell and solid oxide electrolysis cell. In the present study we report on high performing nanostructured Ni:CGO electrocatalyst coated A site deficient Lanthanum doped Strontium Titanate (La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3) based anodes. The anodes were incorporated into the co-sintered DTU metal supported solid oxide fuel cell design and large sized 12 cm × 12 cm cells were fabricated. The titanate material showed good processing characteristics and surface wetting properties towards the Ni:CGO electrocatalyst coating. The cell performances were evaluated on single cell level (active area 16 cm2) and a power density at 0.7 V and 700 °C of 0.650 Wcm−2 with a fuel utilization of 31% was achieved. Taking the temperature into account the performances of the studied anodes are among the best reported for redox stable and corrosion resistant alternatives to the conventional Ni:YSZ composite solid oxide cell electrode.
Close

Details

Original languageEnglish
Pages (from-to)99-106
Number of pages8
JournalJournal of Power Sources
Volume372
Early online date5 Nov 2017
DOIs
StatePublished - 31 Dec 2017

    Research areas

  • Solid oxide fuel cell, Metal support, Lanthanum doped strontium titanate, Redox tolerance, Perovskite A site deficiency

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Framing policy on low emissions vehicles in terms of economic gains: might the most straightforward gain be delivered by supply chain activity to support refuelling?

    Turner, K., Alabi, O., Smith, M., Irvine, J. & Dodds, P. E. Aug 2018 In : Energy Policy. 119, p. 528-534 7 p.

    Research output: Contribution to journalArticle

  2. Probing the structure-property-composition relationship in organic-inorganic tri-halide perovskites

    Payne, J. L., Ni, C., Harwell, J. R., Krishnan Jagadamma, L., McDonald, C., Mariotti, D., Samuel, I. D. W. & Irvine, J. T. S. 16 Jul 2018 In : Physical Chemistry Chemical Physics. In press

    Research output: Contribution to journalArticle

  3. Tailoring SOFC electrode microstructures for improved performance

    Connor, P. A., Yue, X., Savaniu, C. D., Price, R., Triantafyllou, G., Cassidy, M., Kerherve, G., Payne, D. J., Maher, R. C., Cohen, L. F., Tomov, R. I., Glowacki, B. A., Kumar, R. V. & Irvine, J. T. S. 21 Jun 2018 In : Advanced Energy Materials. Early view, 1800120

    Research output: Contribution to journalArticle

  4. Role of lattice distortion and A site cation in the phase transitions of methylammonium lead halide perovskites

    Harwell, J. R., Payne, J. L., Sajjad, M. T., Heutz, F. J. L., Dawson, D. M., Whitfield, P. S., Irvine, J. T. S., Samuel, I. D. W. & Carpenter, M. A. 20 Jun 2018 In : Physical Review Materials. 2, 6, 13 p., 065404

    Research output: Contribution to journalArticle

  5. A novel in situ diffusion strategy to fabricate high performance cathodes for low temperature proton-conducting solid oxide fuel cells

    Hou, J., Miao, L., Hui, J., Bi, L., Liu, W. & Irvine, J. T. S. 14 Jun 2018 In : Journal of Materials Chemistry A. 6, 22, p. 10411-10420 10 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction

    Xu, H., Chen, B., Zhang, H., Tan, P., Yang, G., Irvine, J. T. S. & Ni, M. 1 Apr 2018 In : Journal of Power Sources. 382, p. 135-143 9 p.

    Research output: Contribution to journalArticle

  2. Mechanism of enhanced performance on a hybrid direct carbon fuel cell using sawdust biofuels

    Li, S., Jiang, C., Liu, J., Tao, H., Meng, X., Connor, P., Hui, J., Wang, S., Ma, J. & Irvine, J. T. S. 15 Apr 2018 In : Journal of Power Sources. 383, p. 10-16 7 p.

    Research output: Contribution to journalArticle

  3. Direct methane solid oxide fuel cells based on catalytic partial oxidation enabling complete coking tolerance of Ni-based anodes

    Lee, D., Myung, J., Tan, J., Hyun, S-H., Irvine, J. T. S., Kim, J. & Moon, J. 31 Mar 2017 In : Journal of Power Sources. 345, p. 30-40 11 p.

    Research output: Contribution to journalArticle

  4. Demonstrating hydrogen production from ammonia using lithium imide - Powering a small proton exchange membrane fuel cell

    Hunter, H. M. A., Makepeace, J. W., Wood, T. J., Mylius, O. S., Kibble, M. G., Nutter, J. B., Jones, M. O. & David, W. I. F. 15 Oct 2016 In : Journal of Power Sources. 329, p. 138-147 10 p.

    Research output: Contribution to journalArticle

ID: 251521815