Skip to content

Research at St Andrews

Influence of glaciation on mechanisms of mineral weathering in two high Arctic catchments

Research output: Contribution to journalArticle


Ruth Hindshaw, Tim H.E. Heaton, Eric S. Boyd, Melody L. Lindsay, Edward Thomas Tipper

School/Research organisations


Abstract In order to investigate the effect of glaciation on mineral weathering, the stream water chemistry and the bacterial community composition were analysed in two catchments containing nominally identical sedimentary formations but which differed in the extent of glaciation. The stream waters were analysed for major ions, δ34S, δ18OSO4 and δ18OH2O and associated stream sediments were analysed by 16S rRNA gene tagged sequencing. Sulphate comprised 72–86% and 35–45% of the summer anion budget (in meq) in the unglaciated and glaciated catchments respectively. This indicates that sulfuric acid generated from pyrite weathering is a significant weathering agent in both catchments. Based on the relative proportions of cations, sulphate and bicarbonate, the stream water chemistry of the unglaciated catchment was found to be consistent with a sulphide oxidation coupled to silicate dissolution weathering process whereas in the glaciated catchment both carbonates and silicates weathered via both sulfuric and carbonic acids. Stable isotope measurements of sulphate, together with inferences of metabolic processes catalysed by resident microbial communities, revealed that the pyrite oxidation reaction differed between the two catchments. No δ34S fractionation relative to pyrite was observed in the unglaciated catchment and this was interpreted to reflect pyrite oxidation under oxic conditions. In contrast, δ34S and δ18OSO4 values were positively correlated in the glaciated catchment and were positively offset from pyrite. This was interpreted to reflect pyrite oxidation under anoxic conditions with loss of S intermediates. This study suggests that glaciation may alter stream water chemistry and the mechanism of pyrite oxidation through an interplay of biological, physical and chemical factors.



Original languageEnglish
Pages (from-to)37-50
JournalChemical Geology
Early online date11 Nov 2015
Publication statusPublished - 20 Jan 2016

    Research areas

  • Chemical weathering, Pyrite, Sulphur isotopes, Bacteria, Biogeochemical cycles

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by journal

  1. Highlights of the Goldschmidt Meeting, Heidelberg, 31 March–4 April 1996 in honor of A.W. Hofmann

    Hawkesworth, C. (ed.) & Arndt, N. (ed.), 1997, Chemical Geology, 139 360 p.

    Research output: Contribution to specialist publicationSpecial issue

Related by journal

  1. Depositional and diagenetic constraints on the abundance and spatial variability of carbonate-associated sulfate

    Richardson, J. A., Newville, M., Lanzirotti, A., Webb, S. M., Rose, C. V., Catalano, J. G. & Fike, D. A., 30 May 2019, In : Chemical Geology. In press

    Research output: Contribution to journalArticle

  2. Hydrothermal dedolomitisation of carbonate rocks of the Paleoproterozoic Zaonega Formation, NW Russia — Implications for the preservation of primary C isotope signals

    Kreitsmann, T., Külaviir, M., Lepland, A., Paiste, K., Paiste, P., Prave, A. R., Sepp, H., Romashkin, A. E., Rychanchik, D. V. & Kirsimäe, K., 5 May 2019, In : Chemical Geology. 512, p. 43-57 15 p.

    Research output: Contribution to journalArticle

  3. Potassium isotope fractionation during magmatic differentiation of basalt to rhyolite

    Tuller-Ross, B., Savage, P. S., Chen, H. & Wang, K., 11 Jul 2019, In : Chemical Geology. In press

    Research output: Contribution to journalArticle

  4. Bias in carbon concentration and δ13C measurements of organic matter due to cleaning treatments with organic solvents

    Muller, É., Thomazo, C., Stüeken, E. E., Hallmann, C., Leider, A., Chaduteau, C., Buick, R., Baton, F., Philippot, P. & Ader, M., 20 Aug 2018, In : Chemical Geology. 493, p. 405-412 8 p.

    Research output: Contribution to journalArticle

  5. Carbonated mantle domains at the base of the Earth's transition zone

    Sun, W., Hawkesworth, C. J., Yao, C., Zhang, C., Huang, R., Liu, X., Sun, X., Ireland, T., Song, M., Ling, M., Ding, X., Zhang, Z., Fan, W. & Wu, Z., 5 Feb 2018, In : Chemical Geology. 478, p. 69-75

    Research output: Contribution to journalArticle

ID: 230453032