Skip to content

Research at St Andrews

Influence of zinc on glycosaminoglycan neutralisation during coagulation

Research output: Contribution to journalReview articlepeer-review


Open Access permissions



Heparan sulfate (HS), dermatan sulfate (DS) and heparin are glycosaminoglycans (GAGs) that serve as key natural and pharmacological anticoagulants. During normal clotting such agents require to be inactivated or neutralised. Several proteins have been reported to facilitate their neutralisation, which reside in platelet α-granules and are released following platelet activation. These include histidine-rich-glycoprotein (HRG), fibrinogen and high-molecular-weight kininogen (HMWK). Zinc ions (Zn2+) are also present in α-granules at a high concentration and participate in the propagation of coagulation by influencing the binding of neutralising proteins to GAGs. Zn2+ in many cases increases the affinity of these proteins to GAGs, and is thus an important regulator of GAG neutralisation and haemostasis. Binding of Zn2+ to HRG, HMWK and fibrinogen is mediated predominantly through coordination to histidine residues but the mechanisms by which Zn2+ increases the affinity of the proteins for GAGs are not yet completely clear. Here we will review current knowledge of how Zn2+ binds to and influences the neutralisation of GAGs and describe the importance of this process in both normal and pathogenic clotting.


Original languageEnglish
Pages (from-to)1180-1190
Number of pages11
Issue number9
Early online date22 Aug 2018
Publication statusPublished - Sep 2018

    Research areas

  • Anticoagulants, Blood clotting, Heparin, Platelets, Zinc

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Reduced plasma magnesium levels in type-1 diabetes associate with prothrombotic changes in fibrin clotting and fibrinolysis

    Sobczak, A. I. S., Phoenix, F. A., Pitt, S. J., Ajjan, R. A. & Stewart, A. J., Feb 2020, In: Thrombosis and Haemostasis. 120, 2, p. 243-252 10 p.

    Research output: Contribution to journalArticlepeer-review

  2. Plasma non-esterified fatty acids contribute to increased coagulability in type-2 diabetes through altered plasma zinc speciation

    Sobczak, A. I. S., Katundu, K. G. H., Phoenix, F. A., Khazaipoul, S., Yu, R., Lampiao, F., Stefanowicz, F., Blindauer, C. A., Pitt, S. J., Smith, T. K., Ajjan, R. A. & Stewart, A. J., 28 Aug 2019, In: biorxiv. 2019, 38 p.

    Research output: Contribution to journalArticle

  3. Total plasma magnesium, zinc, copper and selenium concentrations in type-I and type-II diabetes

    Sobczak, A. I. S., Stefanowicz, F., Pitt, S. J., Ajjan, R. A. & Stewart, A. J., Feb 2019, In: BioMetals. 32, 1, p. 123-138 16 p.

    Research output: Contribution to journalArticlepeer-review

  4. Glycosaminoglycan neutralization in coagulation control

    Sobczak, A. I. S., Pitt, S. J. & Stewart, A. J., Jun 2018, In: Arteriosclerosis, Thrombosis, and Vascular Biology. 38, 6, p. 1258-1270 14 p.

    Research output: Contribution to journalReview articlepeer-review

Related by journal

  1. A metalloproteomic analysis of interactions between plasma proteins and zinc: elevated fatty acid levels affect zinc distribution

    Coverdale, J. P. C., Barnett, J. P., Adamu, A. H., Griffiths, E. J., Stewart, A. J. & Blindauer, C. A., 1 Nov 2019, In: Metallomics. 11, 11, p. 1805-1819 15 p.

    Research output: Contribution to journalArticlepeer-review

ID: 255043324