Skip to content

Research at St Andrews

Initial Characterisation of Cerium Doped Neodymium Cuprates for Solid Oxide Fuel Cell Applications

Research output: Chapter in Book/Report/Conference proceedingConference contribution

DOI

Author(s)

M. Cassidy, J. T. S. Irvine

School/Research organisations

Abstract

Electrically conducting ceramics are of great interest for high temperature applications such as current collectors and contacts in solid oxide fuel cells (SOFCs). This paper presents the initial characterisation of the high temperature electrical properties of cerium doped neodymium copper oxide (Nd(2-x)Ce(x)CuO(4+delta)) (NCCO) with respect to Cc content, temperature and oxygen partial pressure for possible SOFC applications. Initial results have shown conductivities in air up to 110cm(-1) at 900 degrees C and 60Scm(-1) at 800 degrees C, with the highest conductivity to date at x = 0.20. With reducing p(O(2)) the conductivity initially rises before dropping significantly. Specimens sintered at 950 degrees C exhibited significant improvement in conductivity with time at temperature suggesting continued in-situ microstructural development. NCCO therefore presents itself as a possible candidate for use as a cathode contact material, sintering to a strong, highly conductive layer at stack operating conditions.

Close

Details

Original languageEnglish
Title of host publicationSOLID OXIDE FUEL CELLS 10 (SOFC-X), PTS 1 AND 2
EditorsK Eguchi, SC Singhai, H Yokokawa, H Mizusaki
Place of PublicationPENNINGTON
PublisherELECTROCHEMICAL SOCIETY INC
Pages1235-1241
Number of pages7
ISBN (Print)978-1-56677-554-0
DOIs
Publication statusPublished - 2007
Event10th International Symposium on Solid Oxide Fuel Cells - Nara, Japan
Duration: 3 Jun 20078 Jun 2007

Publication series

NameECS Transactions
PublisherELECTROCHEMICAL SOCIETY INC
Volume7
ISSN (Print)1938-5862

Conference

Conference10th International Symposium on Solid Oxide Fuel Cells
CountryJapan
CityNara
Period3/06/078/06/07

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Achieving strong coherency for a composite electrode via one-pot method with enhanced electrochemical performance in reversible solid oxide cells

    Tian, Y., Wang, W., Liu, Y., Naden, A., Xu, M., Wu, S., Chi, B., Pu, J. & Irvine, J. T. S., 19 Mar 2021, In: ACS Catalysis. 11, 6, p. 3704-3714 11 p.

    Research output: Contribution to journalArticlepeer-review

  2. Alkaline modified A-site deficient perovskite catalyst surface with exsolved nanoparticles and functionality in biomass valorisation

    Umar, A., Neagu, D. & Irvine, J. T. S., 1 Mar 2021, In: Biofuel Research Journal. 8, 1, p. 1342-1350 9 p.

    Research output: Contribution to journalArticlepeer-review

  3. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

  4. Upscaling of co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells: a progress report on a decade of academic-industrial collaboration

    Price, R., Cassidy, M., Grolig, J. G., Longo, G. G., Weissen, U. G., Mai, A. G. & Irvine, J. T. S., 12 Feb 2021, In: Advanced Energy Materials. Early View, 21 p., 2003951.

    Research output: Contribution to journalReview articlepeer-review

  5. Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites: electrical and electrochemical performance

    Ferrel-Alvarez, A. C., Domínguez-Crespo, M. A., Cong, H., Torres-Huerta, A. M., Palma-Ramírez, D. & Irvine, J. T. S., 15 Jan 2021, In: Journal of Alloys and Compounds. 851, 156882.

    Research output: Contribution to journalArticlepeer-review

ID: 47286307

Top