Skip to content

Research at St Andrews

Integrating sandstone petrology and nonmarine sequence stratigraphy: application to the Late Cretaceous fluvial systems of Southwestern Utah, USA

Research output: Contribution to journalArticle

Author(s)

TF Lawton, S Pollock, Ruth Alison Joyce Robinson

School/Research organisations

Abstract

Petrographic and dispersal data are essential to correct interpretation of mechanisms that create continental sequence-stratigraphic architecture. A case study from southern Utah demonstrates that Upper Cretaceous (upper Santonian-Campanian) alluvial successions in the southernmost part of the Cordilleran foreland basin were deposited by fluvial systems of contrasting drainage directions and provenance, and suggests that different mechanisms governed their sequence architecture. Most of the rivers flowed northeast, subparallel to the basin foredeep. Less common fluvial systems flowed to the east-southeast. The fluvial sandstones fall naturally into four petrofacies: (1) quartzofeldspatholithic (mean Qt(61)F(19)L(20)); (2) feldspatholithic (Qt(29)F(19)L(52)); (3) quartzolithic (Qt(75)F(6)L(20)); and (4) quartzose (Qt(99)F(1)L(1)). Petrofacies 1 and 2 were derived from mixed supracrustal and basement sources to the southwest and south, respectively, whereas petrofacies 3 and 4 were derived from uplifted thrust sheets of the Sevier orogenic belt to the southwest and west, respectively. Only the east-southeast-flowing rivers transported the quartzose petrofacies. The fluvial strata, which include the uppermost Straight Cliffs, Wah-weap, and Kaiparowits formations, form two large-scale stratigraphic successions typically interpreted as continental stratigraphic sequences hundreds of meters thick. Each succession begins with an amalgamated braided-fluvial deposit, grades to mudstone-rich strata with low sandstone-body connectivity, and culminates in highly connected sandstone bodies with multistory stacking. The basal amalgamated deposits of each succession are architecturally similar, but their compositional and dispersal characteristics are different. Quartzofeldspatholithic, quartzolithic, and quartzose sandstones above the lower base-level shift are variable, but generally similar in compositional and dispersal characteristics to both underlying and overlying strata, a phenomenon termed here congruence. In contrast, quartzose amalgamated fluvial sandstone above the upper base-level shift differs sharply in composition and dispersal direction from underlying and overlying lithic-rich strata. The foredeep aids controlled the progradation direction of the congruent shift, which was likely driven by climatically induced sediment influx, a eustatic fall, or both. In the case of the incongruent shift, increased sediment supply permitted the rivers to cross the foredeep. Temporal association of the upper amalgamated deposit with active structures in the thrust belt and foreland basin indicates that syntectonic thrust uplift, not isostatic uplift or climate, caused the influx of quartz.

Close

Details

Original languageEnglish
Pages (from-to)389-406
Number of pages18
JournalJournal of Sedimentary Research
Volume73
StatePublished - May 2003

    Research areas

  • BOOK-CLIFFS, CASTLEGATE SANDSTONE, KAIPAROWITS PLATEAU, FACIES ARCHITECTURE, DETRITAL MODES, SOUTHERN UTAH, GRAIN-SIZE, FORELAND, BASIN, EVOLUTION

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Evolution of the Mozambique Belt in Malawi constrained by granitoid U-Pb, Sm-Nd and Lu-Hf isotopic data

    Manda, B. W. C., Cawood, P. A., Spencer, C. J., Prave, T., Robinson, R. & Roberts, N. M. W. 29 Nov 2018 In : Gondwana Research. In press

    Research output: Contribution to journalArticle

  2. Rapid and punctuated Late Holocene recession of Siling Co, central Tibet

    Shi, X., Kirby, E., Furlong, K. P., Meng, K., Robinson, R., Lu, H. & Wang, E. 15 Sep 2017 In : Quaternary Science Reviews. 172, p. 15-31 17 p.

    Research output: Contribution to journalArticle

  3. Landscape response to late Pleistocene climate change in NW Argentina: sediment flux modulated by basin geometry and connectivity

    Schildgen, T. F., Robinson, R. A. J., Savi, S., Phillips, W. M., Spencer, J. Q. G., Bookhagen, B., Scherler, D., Tofelde, S., Alonso, R. N., Kubik, P. W., Binnie, S. A. & Strecker, M. R. Feb 2016 In : Journal of Geophysical Research - Earth Surface. 121, 2, p. 392-414 23 p.

    Research output: Contribution to journalArticle

  4. Fluvio-deltaic avulsions during relative sea-level fall

    Nijhuis, A. G., Edmonds, D. A., Caldwell, R. L., Cederberg, J. A., Slingerland, R. L., Best, J. L., Parsons, D. R. & Robinson, R. A. J. Aug 2015 In : Geology. 43, 8, p. 719-722 4 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Statistical estimation of the position of an apex: application to the geological record

    Owen, A., Jupp, P. E., Nichols, G. J., Hartley, A. J., Weissmann, G. S. & Sadykova, D. Feb 2015 In : Journal of Sedimentary Research. 85, 2, p. 142-152 11 p.

    Research output: Contribution to journalArticle

  2. Origin of fluvial grain-size trends in a foreland basin: Pocono Formation on the central Appalachian basin

    Robinson, R. A. J. & Slingerland, R. L. May 1998 In : Journal of Sedimentary Research. 68, 3, p. 473-486 14 p.

    Research output: Contribution to journalArticle

ID: 206068