Skip to content

Research at St Andrews

Investigation of conductivity of (CexY0.2−x)Sc0.6Zr3.2O8−δ (0 < x < 0.2) system and its dependence upon oxygen partial pressure

Research output: Contribution to journalArticlepeer-review

Author(s)

E. de Carvalho, W. Preis, W. Sitte, J. T. S. Irvine

School/Research organisations

Abstract

The system Y2O3-Sc2O3-ZrO2 has been extensively studied in the last decade, with the purpose of using it as an electrolyte for solid oxide fuel cells (SOFCs). Scandia stabilized zirconia (SSZ) materials have good ionic conductivity, and yttria, when introduced, stabilizes the SSZ against phase transformation. As cerium is a large ion, it is expected to stabilize the cubic fluorite phase and enhance the conductivity of the scandia zirconia system. The electrical properties of system (CexY0.2-xSc0.6)Zr3.2O8-delta were studied, observing how conductivity changes when cerium is introduced and the amount of yttrium is decreased. Compositions were produced by an innovative sol-gel combustion method in an attempt to obtain a compositionally homogeneous, dense material. This material has the potential to be used as an electrolyte, at intermediate temperatures, for SOFCs. Conductivity in the system (CexY0.2-xSC0.6)Zr3.2O8-delta, has been investigated as a function of partial pressure of oxygen down to 10(-24) bars, at 700 degrees C. Samples with Ceria content have better conductivity at higher pO(2) values. When they are subjected to lower partial pressures of oxygen, there is a clear drop in the conductivity. This drop in the conductivity could be a consequence of the clustering of vacancies, resulting in a decrease of ionic conductivity, as the number of vacancies increases with ceria content. For the samples tested in this system, there is no evidence of significant electronic conductivity. The temperature dependence of conductivity was determined at ambient pressure from 300 to 800 degrees C. From the Arrhenius plot a phase transition is observed to occur between 550 and 600 degrees C. Composition does not have a very significant effect on conductivity values for each temperature. At low temperatures, the dominant contribution to conductivity is due to the poor grain boundary conductivity. (C) 2010 Elsevier B.V. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)1344-1348
Number of pages5
JournalSolid State Ionics
Volume181
Issue number29-30
DOIs
Publication statusPublished - 22 Sep 2010

    Research areas

  • Scandia zirconia, Electrolytes, SCANDIA-ZIRCONIA ELECTROLYTES, FUEL-CELLS

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Enhancing electrochemical CO2 reduction using Ce(Mn,Fe)O2 with La(Sr)Cr(Mn)O3 cathode for high-temperature solid oxide electrolysis cells

    Lee, S., Kim, M., Lee, K. T., Irvine, J. T. S. & Shin, T. H., 12 May 2021, In: Advanced Energy Materials. Early View, 12 p., 2100339.

    Research output: Contribution to journalArticlepeer-review

  2. Durability of La0.20Sr0.25Ca0.45TiO3-based SOFC anodes: identifying sources of degradation in Ni and Pt/ceria co-impregnated fuel electrode microstructures

    Price, R., Weissen, U., Grolig, J. G., Cassidy, M., Mai, A. & Irvine, J. T. S., 8 Apr 2021, In: Journal of Materials Chemistry A. 15 p.

    Research output: Contribution to journalArticlepeer-review

  3. Achieving strong coherency for a composite electrode via one-pot method with enhanced electrochemical performance in reversible solid oxide cells

    Tian, Y., Wang, W., Liu, Y., Naden, A., Xu, M., Wu, S., Chi, B., Pu, J. & Irvine, J. T. S., 19 Mar 2021, In: ACS Catalysis. 11, 6, p. 3704-3714 11 p.

    Research output: Contribution to journalArticlepeer-review

  4. Alkaline modified A-site deficient perovskite catalyst surface with exsolved nanoparticles and functionality in biomass valorisation

    Umar, A., Neagu, D. & Irvine, J. T. S., 1 Mar 2021, In: Biofuel Research Journal. 8, 1, p. 1342-1350 9 p.

    Research output: Contribution to journalArticlepeer-review

  5. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

Related by journal

  1. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

  2. Evaluating sulfur-tolerance of metal/Ce0.80Gd0.20O1.90 co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells

    Price, R., Grolig, J. G., Mai, A. & Irvine, J. T. S., Apr 2020, In: Solid State Ionics. 347, 115254.

    Research output: Contribution to journalArticlepeer-review

  3. Oxygen ion conductivity in ceria-based electrolytes co-doped with samarium and gadolinium

    Coles-Aldridge, A. V. & Baker, R. T., Apr 2020, In: Solid State Ionics. 347, 115255.

    Research output: Contribution to journalArticlepeer-review

  4. Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells

    He, S., Chen, K., Saunders, M., Quadir, Z., Tao, S., Irvine, J. T. S., Cui, C. Q. & Jiang, S. P., 1 Nov 2018, In: Solid State Ionics. 325, p. 176-188 13 p.

    Research output: Contribution to journalArticlepeer-review

  5. Ionic conductivity in multiply substituted ceria-based electrolytes

    Coles-Aldridge, A. V. & Baker, R. T., Mar 2018, In: Solid State Ionics. 316, p. 9-19 11 p.

    Research output: Contribution to journalArticlepeer-review

ID: 6326085

Top