Skip to content

Research at St Andrews

Investigation of the mixed conducting oxide Sc0.15Y0.05Zr0.62Ti0.18O1.9 as a potential SOFC anode material

Research output: Contribution to journalArticlepeer-review

DOI

Author(s)

School/Research organisations

Abstract

Electrochemical current-potential and impedance measurement techniques have been applied to a ceramic anode based on the mixed electronic and oxide ion conductor Sc(0.15)Y(0.05)Zr(0.62)Ti(0.18)O(1.)9 (ScYZT). Significantly better performance is obtained with this anode using a platinum current collector than for platinum on its own or platinum applied to a porous yttria-stabilized zirconia interlayer. Indeed the polarization resistance of ScYZT is 5.66 Omega cm(2) at open circuit-voltage at 900 degreesC in wet 5% H-2 which is ten times lower than for platinum under the same conditions. Impedance spectroscopic measurements show a number of phenomena attributed to a combination of the electronic resistance through the anode, the oxide ionic current exchange between anode and electrolyte, and noncharge chemical processes at the anode. It was found that interface and chemical impedances change with changes in the electronic conductivity of ScYZT when different bias potentials are applied, although the overall chemical impedance was not observed to change significantly. These measurements suggest that ScYZT is a promising anode material for use with an appropriate current collector. (C) 2004 The Electrochemical Society.

Close

Details

Original languageEnglish
Pages (from-to)A497-A503
Number of pages7
JournalJournal of The Electrochemical Society
Volume151
DOIs
Publication statusPublished - 2004

    Research areas

  • FUEL-CELLS, ELECTRICAL CHARACTERIZATION, SOLID-SOLUTIONS, ZIRCONIA, SCANDIA

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites: electrical and electrochemical performance

    Ferrel-Alvarez, A. C., Domínguez-Crespo, M. A., Cong, H., Torres-Huerta, A. M., Palma-Ramírez, D. & Irvine, J. T. S., 15 Jan 2021, In: Journal of Alloys and Compounds. 851, 156882.

    Research output: Contribution to journalArticlepeer-review

  2. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light

    Hui, J., Pestana, C. J., Caux, M., Gunaratne, H. Q. N., Edwards, C., Robertson, P. K. J., Lawton, L. A. & Irvine, J. T. S., 15 Jan 2021, In: Journal of Photochemistry and Photobiology A: Chemistry. 405, 112935.

    Research output: Contribution to journalArticlepeer-review

  3. Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies

    Kim, E. J., Mofredj, K., Pickup, D., Chadwick, A., Irvine, J. T. S. & Armstrong, R., 1 Jan 2021, In: Journal of Power Sources. 481, 229010.

    Research output: Contribution to journalArticlepeer-review

  4. A Ce/Ru codoped SrFeO3−δ perovskite for a coke-resistant anode of a symmetrical solid oxide fuel cell

    Li, B., He, S., Li, J., Yue, X., Irvine, J. T. S., Xie, D., Ni, J. & Ni, C., 18 Dec 2020, In: ACS Catalysis. 10, 24, p. 14398-14409 12 p.

    Research output: Contribution to journalArticlepeer-review

  5. Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation

    Pestana, C. J., Portela Noronha, J., Hui, J., Edwards, C., Gunaratne, H. Q. N., Irvine, J. T. S., Robertson, P. K. J., Capelo-Neto, J. & Lawton, L. A., 25 Nov 2020, In: Science of the Total Environment. 745, 141154.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. In situ thermal battery discharge using CoS2 as a cathode material

    Payne, J. L., Percival, J. D., Giagloglou, K., Crouch, C., Carins, G. M., Smith, R., Gover, R. & Irvine, J. T. S., 2 Aug 2019, In: Journal of The Electrochemical Society. 166, 12, p. A2660-A2664 5 p.

    Research output: Contribution to journalArticlepeer-review

  2. Preparation and testing of metal/Ce0.80Gd0.20O1.90 (metal: Ni, Pd, Pt, Rh, Ru) co-impregnated La0.20Sr0.25Ca0.45TiO3 anode microstructures for solid oxide fuel cells

    Price, R., Cassidy, M., Grolig, J. G., Mai, A. & Irvine, J. T. S., 12 Mar 2019, In: Journal of The Electrochemical Society. 166, 4, p. F343-F349

    Research output: Contribution to journalArticlepeer-review

  3. Transition metal chlorides NiCl2, KNiCl3, Li6VCl8 and Li2MnCl4 as alternative cathode materials in primary Li thermal batteries

    Giagloglou, K., Payne, J. L., Crouch, C., Gover, R. K. B., Connor, P. A. & Irvine, J. T. S., 14 Nov 2018, In: Journal of The Electrochemical Society. 165, 14, p. A3510-A3516

    Research output: Contribution to journalArticlepeer-review

  4. La and Ca-doped A-site deficient strontium titanates anode for electrolyte supported direct methane solid oxide fuel cell

    Tiwari, P., Yue, X., Irvine, J. T. S. & Basu, S., 3 Aug 2017, In: Journal of The Electrochemical Society. 164, 9, p. F1030-F1036

    Research output: Contribution to journalArticlepeer-review

  5. Synthesis and electrochemical study of CoNi2S4 as a novel cathode material in a primary Li thermal battery

    Giagloglou, K., Payne, J. L., Crouch, C., Gover, R., Connor, P. A. & Irvine, J. T. S., 25 Jul 2017, In: Journal of The Electrochemical Society. 164, 9, p. A2159-A2163

    Research output: Contribution to journalArticlepeer-review

ID: 197581

Top