Skip to content

Research at St Andrews

Ionic conductivity in multiply substituted ceria-based electrolytes

Research output: Contribution to journalArticlepeer-review

Author(s)

Alice V. Coles-Aldridge, Richard T. Baker

School/Research organisations

Abstract

Cerias, appropriately doped with trivalent rare earth ions, have high oxide ion conductivity and are attractive SOFC (solid oxide fuel cell) electrolytes. Here, seven compositions of Ce0.8SmxGdyNdzO1.9 (where x, y and z = 0.2, 0.1, 0.0667 or 0 and x + y + z = 0.2) are synthesised using a low temperature method in order to determine the effect of multiple doping on microstructure and conductivity. Analysis using scanning and transmission electron microscopy, inductively coupled plasma mass spectrometry, X-ray diffraction and impedance spectroscopy is carried out. Crystallite sizes are determined in the powders and relative densities and grain size distributions were obtained in sintered pellets. Total, bulk and grain boundary conductivities are obtained using impedance spectroscopy and corresponding activation energies and enthalpies of ion migration and defect association are calculated. The highest total conductivity observed at 600 °C is 1.80 Sm−1 for Ce0.8Sm0.1Gd0.1O1.9 and an enhancement effect on conductivity for this combination of co-dopants between 300 °C and 700 °C relative to the singly doped compounds - Ce0.8Sm0.2O1.9 and Ce0.8Gd0.2O1.9 - is seen. This has interesting implications for their application as SOFC electrolytes, especially at intermediate temperatures.
Close

Details

Original languageEnglish
Pages (from-to)9-19
Number of pages11
JournalSolid State Ionics
Volume316
Early online date16 Dec 2017
DOIs
Publication statusPublished - Mar 2018

    Research areas

  • Ceria, Doping, Ionic conductivity, Fuel cells, Solid oxide fuel cells, Rare earth

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Methanol reforming by nanostructured Pd/Sm-doped ceria catalysts

    Kosinski, M. R., Vizcaíno, A. J., Gómez-Sainero, L. M., Carrero, A. & Baker, R. T., 5 Jun 2021, In: Applied Catalysis B: Environmental. 286, 119935.

    Research output: Contribution to journalArticlepeer-review

  2. Ordered mesoporous carbon as a support for palladium-based hydrodechlorination catalysts

    Sakina, F., Fernandez-Ruiz, C., Bedia, J., Gomez-Sainero, L. & Baker, R., 28 Dec 2020, In: Catalysts. 11, 1, 16 p., 23.

    Research output: Contribution to journalArticlepeer-review

  3. Deactivation and regeneration of activated carbon-supported Rh and Ru catalysts in the hydrodechlorination of chloromethanes into light olefins

    Martin-Martinez, M., Rodriguez, J. J., Baker, R. T. & Gómez-Sainero, L. M., 1 Oct 2020, In: Chemical Engineering Journal. 397, 125479.

    Research output: Contribution to journalArticlepeer-review

  4. Optimization of STEM-HAADF electron tomography reconstructions by parameter selection in compressed sensing total variation minimization-based algorithms

    Muñoz-Ocaña, J. M., Bouziane, A., Sakina, F., Baker, R. T., Hungría, A. B., Calvino, J. J., Rodríguez-Chía, A. M. & López-Haro, M., 9 Jun 2020, In: Particle & Particle Systems Characterization. 37, 6, 2000070.

    Research output: Contribution to journalArticlepeer-review

  5. Oxygen ion conductivity in ceria-based electrolytes co-doped with samarium and gadolinium

    Coles-Aldridge, A. V. & Baker, R. T., Apr 2020, In: Solid State Ionics. 347, 115255.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

  2. Evaluating sulfur-tolerance of metal/Ce0.80Gd0.20O1.90 co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells

    Price, R., Grolig, J. G., Mai, A. & Irvine, J. T. S., Apr 2020, In: Solid State Ionics. 347, 115254.

    Research output: Contribution to journalArticlepeer-review

  3. Oxygen ion conductivity in ceria-based electrolytes co-doped with samarium and gadolinium

    Coles-Aldridge, A. V. & Baker, R. T., Apr 2020, In: Solid State Ionics. 347, 115255.

    Research output: Contribution to journalArticlepeer-review

  4. Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells

    He, S., Chen, K., Saunders, M., Quadir, Z., Tao, S., Irvine, J. T. S., Cui, C. Q. & Jiang, S. P., 1 Nov 2018, In: Solid State Ionics. 325, p. 176-188 13 p.

    Research output: Contribution to journalArticlepeer-review

ID: 251796867

Top