Skip to content

Research at St Andrews

Ionic conductivity of amorphous lithium lanthanum titanate thin film

Research output: Contribution to journalArticlepeer-review

Author(s)

S Furusawa, H Tabuchi, T Sugiyama, S W Tao, J T S Irvine

School/Research organisations

Abstract

Amorphous lithium lanthanum titanate (LLT) thin films were prepared by the pulsed laser deposition (PLD) method. By X-ray diffraction measurement of the films, it was confirmed that the crystal structure of the as-prepared thin films was amorphous. The temperature dependence of the ionic conductivity of the amorphous LLT thin film was measured from 300 to 475 K over the frequency region 100 Hz to 10 MHz. The value 0.35 eV was estimated as the activation energy of Li+ ionic conduction in the film in the temperature region 300-475 K. It was revealed that the transfer ratio of Li+ ion for the ionic conduction of the amorphous LLT thin film is over 94%, and the amorphous LLT thin film shows super-ionic conduction at and above room temperature. The conductivity of the LLT thin film was an order of magnitude higher than that of its polycrystalline precursor, mainly due to absence of grain boundary elements and its structural disorder. (C) 2004 Elsevier B.V. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)553-558
Number of pages6
JournalSolid State Ionics
Volume176
DOIs
Publication statusPublished - 14 Feb 2005

    Research areas

  • lithium lanthanum titanate, amorphous, thin film, pulsed laser deposition, conductivity, SINGLE-CRYSTAL, DIFFRACTION, GROWTH

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. 2021 roadmap for sodium-ion batteries

    Tapia-Ruiz, N., Armstrong, A. R., Alptekin, H., Amores, M. A., Au, H., Barker, J., Boston, R., Brant, W. R., Brittain, J. M., Chen, Y., Chhowalla, M., Choi, Y-S., Costa, S. I. R., Crespo Ribadeneyra, M., Cussen, S. A., Cussen, E. J., David, W. I. F., Desai, A. V., Dickson, S. A. M., Eweka, E. I. & 41 others, Forero-Saboya, J. D., Grey, C. P., Griffin, J. M., Gross, P., Hua, X., Irvine, J. T. S., Johansson, P., Jones, M. O., Karlsmo, M., Kendrick, E., Kim, E., Kolosov, O. V., Li, Z., Mertens, S. F. L., Mogensen, R., Monconduit, L., Morris, R. E., Naylor, A. J., Nikman, S., O’keefe, C. A., Ould, D. M. C., Palgrave, R. G., Poizot, P., Ponrouch, A., Renault, S., Reynolds, E. M., Rudola, A., Sayers, R., Scanlon, D. O., Sen, S., Seymour, V. R., Silván, B., Sougrati, M. T., Stievano, L., Stone, G. S., Thomas, C. I., Titirici, M-M., Tong, J., Wood, T. J., Wright, D. S. & Younesi, R., 26 Jul 2021, In: Journal of Physics: Energy. 3, 3, 89 p., 031503.

    Research output: Contribution to journalArticlepeer-review

  2. Roadmap on inorganic perovskites for energy applications

    Irvine, J., Rupp, J., Liu, G., Xu, X., Haile, S. M., Qian, X., Snyder, A., Freer, R., Ekren, D., Skinner, S., Celikbilek, O., Chen, S., Tao, S., Shin, T. H., O'Hayre, R., Huang, J., Duan, C., Papac, M., Li, S., Russel, A. & 8 others, Celorrio, V., Hayden, B., Nolan, H., Huang, X., Wang, G., Metcalfe, I., Neagu, D. & Martin, S. G., 22 Jul 2021, In: Journal of Physics: Energy. 3, 3, 51 p., 031502.

    Research output: Contribution to journalReview articlepeer-review

  3. Carrier extraction from metallic perovskite oxide nanoparticles

    McDonald, C., Ni, C., Švrček, V., Macias-Montero, M., Velusamy, T., Connor, P. A., Maguire, P., Irvine, J. T. S. & Mariotti, D., 9 Jul 2021, (E-pub ahead of print) In: Nanoscale. Advance Article, 8 p.

    Research output: Contribution to journalArticlepeer-review

  4. Time-resolved in-situ X-ray diffraction study of CaO and CaO:Ca3Al2O6 composite catalysts for biodiesel production

    Bonaccorso, A. D., Papargyriou, D., Fuente Cuesta, A., Magdysyuk, O. V., Michalik, S., Connolley, T., Payne, J. L. & Irvine, J. T. S., 28 Jun 2021, In: Journal of Physics: Energy. 3, 3, 12 p., 034014.

    Research output: Contribution to journalArticlepeer-review

  5. Platinum incorporation into titanate perovskites to deliver emergent active and stable platinum nanoparticles

    Kothari, M., Jeon, Y., Miller, D. N., Pascui, A. E., Wails, D., Ramos, S., Chadwick, A. & Irvine, J. T. S., 24 May 2021, (E-pub ahead of print) In: Nature Chemistry.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

  2. Evaluating sulfur-tolerance of metal/Ce0.80Gd0.20O1.90 co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells

    Price, R., Grolig, J. G., Mai, A. & Irvine, J. T. S., Apr 2020, In: Solid State Ionics. 347, 115254.

    Research output: Contribution to journalArticlepeer-review

  3. Oxygen ion conductivity in ceria-based electrolytes co-doped with samarium and gadolinium

    Coles-Aldridge, A. V. & Baker, R. T., Apr 2020, In: Solid State Ionics. 347, 115255.

    Research output: Contribution to journalArticlepeer-review

  4. Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells

    He, S., Chen, K., Saunders, M., Quadir, Z., Tao, S., Irvine, J. T. S., Cui, C. Q. & Jiang, S. P., 1 Nov 2018, In: Solid State Ionics. 325, p. 176-188 13 p.

    Research output: Contribution to journalArticlepeer-review

  5. Ionic conductivity in multiply substituted ceria-based electrolytes

    Coles-Aldridge, A. V. & Baker, R. T., Mar 2018, In: Solid State Ionics. 316, p. 9-19 11 p.

    Research output: Contribution to journalArticlepeer-review

ID: 711259

Top