Skip to content

Research at St Andrews

ISN Forefronts Symposium 2015: The Evolution of Hypertension–Old Genes, New Concepts

Research output: Contribution to journalArticlepeer-review

Open Access permissions



Morag K. Mansley, Jessica R. Ivy, Matthew A. Bailey

School/Research organisations


Hypertension is known as the “silent killer,” driving the global public health burden of cardiovascular and renal disease. Blood pressure homeostasis is intimately associated with sodium balance and the distribution of sodium between fluid compartments and within tissues. On a population level, most societies consume 10 times more salt that the 0.5 g required by physiological need. This high salt intake is strongly linked to hypertension and to the World Health Organization targeting a ∼30% relative reduction in mean population salt intake to arrest the global mortality due to cardiovascular disease. But how does a habitually high-salt diet cause blood pressure to rise? In this focused review, we discuss 2 “evolutionary medicine” concepts, presented at the ISN Forefront Meeting “Immunomodulation of Cardio-renal Function.” We first examine how ancestral variants in genes that conferred a selection advantage during early human development are now maladaptive. We then discuss the conservation of “renal” sodium transport processes across multiple organ systems, including the brain. These systems influence sodium appetite and can exert an often-overlooked effect on long-term blood pressure control.



Original languageEnglish
Pages (from-to)197-203
Number of pages7
JournalKidney International Reports
Issue number3
Publication statusPublished - 1 Jan 2016

    Research areas

  • blood pressure, evolution, hypertension, inflammation, kidney, pressure natriuresis, salt

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Prostaglandin E2 stimulates the epithelial sodium channel (ENaC) in cultured mouse cortical collecting duct cells in an autocrine manner

    Mansley, M. K., Niklas, C., Nacken, R., Mandery, K., Glaeser, H., Fromm, M. F., Korbmacher, C. & Bertog, M., 22 May 2020, In: Journal of General Physiology. 152, 8, 15 p., e201912525.

    Research output: Contribution to journalArticlepeer-review

  2. Trichostatin A blocks aldosterone-induced Na+ transport and control of serum- and glucocorticoid-inducible kinase 1 in cortical collecting duct cells

    Mansley, M. K., Roe, A. J., Francis, S. L., Gill, J. H., Bailey, M. A. & Wilson, S. M., 16 Jan 2020, In: British Journal of Pharmacology. 176, 24, p. 4708-4719 12 p.

    Research output: Contribution to journalArticlepeer-review

  3. Glucocorticoid receptor activation stimulates the sodium-chloride cotransporter and influences the diurnal rhythm of its phosphorylation

    Ivy, J. R., Jones, N. K., Costello, H. M., Mansley, M. K., Peltz, T. S., Flatman, P. W. & Bailey, M. A., 2019, In: American Journal of Physiology - Renal Physiology. 317, 6, p. F1536-F1548

    Research output: Contribution to journalArticlepeer-review

  4. Inhibitors of the proteasome stimulate the epithelial sodium channel (ENaC) through SGK1 and mimic the effect of aldosterone

    Mansley, M. K., Korbmacher, C. & Bertog, M., Feb 2018, In: Pflugers Archiv European Journal of Physiology. 470, 2, p. 295-304 10 p.

    Research output: Contribution to journalArticlepeer-review

  5. mCCD cl1 cells show plasticity consistent with the ability to transition between principal and intercalated cells

    Assmus, A. M., Mansley, M. K., Mullins, L. J., Peter, A. & Mullins, J. J., 1 Jan 2018, In: American Journal of Physiology - Renal Physiology. 314, 5, p. F820-F831

    Research output: Contribution to journalArticlepeer-review

ID: 268444928