Skip to content

Research at St Andrews

Isolation of isoform-specific binding proteins (Affimers) by phage display using negative selection

Research output: Contribution to journalArticlepeer-review

Author(s)

Anna Ah-San Tang, Christian Tiede, David J Hughes, Michael J McPherson, Darren C Tomlinson

School/Research organisations

Abstract

Some 30 years after its discovery, phage display remains one of the most widely used methods of in vitro selection. Initially developed to revolutionize the generation of therapeutic antibodies, phage display is now the first choice for screening artificial binding proteins. Artificial binding proteins can be used as reagents to study protein-protein interactions, target posttranslational modifications, and distinguish between homologous proteins. They can also be used as research and affinity reagents, for diagnostic purposes, and as therapeutics. However, the ability to identify isoform-specific reagents remains highly challenging. We describe an adapted phage display protocol using an artificial binding protein (Affimer) for the selection of isoform-selective binding proteins.

Close

Details

Original languageEnglish
Article numbereaan0868
Number of pages12
JournalScience Signaling
Volume10
Issue number505
DOIs
Publication statusPublished - 14 Nov 2017

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. The BHLF1 locus of Epstein-Barr virus contributes to viral latency and B-cell immortalization

    Yetming, K. D., Lupey-Green, L. N., Biryukov, S., Hughes, D. J., Marendy, E. M., Miranda, J. J. L. & Sample, J. T., 24 Jun 2020, In: Journal of Virology. Latest Articles, JVI01215-20.

    Research output: Contribution to journalArticlepeer-review

  2. Direct antiviral activity of interferon stimulated genes is responsible for resistance to paramyxoviruses in ISG15-deficient cells

    Holthaus, D., Vasou, A., Bamford, C., Andrejeva, J., Paulus, C., Randall, R. E., McLauchlan, J. & Hughes, D. J., 22 Jun 2020, In: The Journal of Immunology. 11 p., ji1901472.

    Research output: Contribution to journalArticlepeer-review

  3. Innate intracellular antiviral responses restrict the amplification of defective virus genomes of parainfluenza virus type 5

    Wignall-Fleming, E. B., Vasou, A., Young, D., Short, J. A. L., Hughes, D. J., Goodbourn, S. & Randall, R. E., 16 Jun 2020, In: Journal of Virology. 94, 13, 15 p., 00246-20.

    Research output: Contribution to journalArticlepeer-review

  4. Analysis of paramyxovirus transcription and replication by high-throughput sequencing

    Wignall-Fleming, E. B., Hughes, D. J., Vattipally, S., Modha, S., Goodbourn, S., Davison, A. J. & Randall, R. E., 13 Aug 2019, In: Journal of Virology. 93, 17, 17 p., e00571-19.

    Research output: Contribution to journalArticlepeer-review

  5. Contribution of the KSHV and EBV lytic cycles to tumourigenesis

    Manners, O., Murphy, J., Coleman, A., Hughes, D. J. & Whitehouse, A., Oct 2018, In: Current Opinion in Virology. 32, p. 60-70

    Research output: Contribution to journalReview articlepeer-review

Related by journal

  1. Generation of specific inhibitors of SUMO-1- and SUMO-2/3-mediated protein-protein interactions using Affimer (Adhiron) technology

    Hughes, D. J., Tiede, C., Penswick, N., Ah-San Tang, A., Trinh, C. H., Mendal, U., Zajac, K. Z., Gaule, T., Howell, G., Edwards, T. A., Duan, J., Feyfant, E., McPhereson, M. J., Tomlinson, D. C. & Whitehouse, A., 14 Nov 2017, In: Science Signaling. 10, 505, 14 p., eaaj2005.

    Research output: Contribution to journalArticlepeer-review

  2. Reconstituted human TPC1 is a proton-permeable ion channel and is activated by NAADP or Ca2+

    Pitt, S. J., Lam, A. K. M., Rietdorf, K., Galione, A. & Sitsapesan, R., 20 May 2014, In: Science Signaling. 7, 326, ra46.

    Research output: Contribution to journalArticlepeer-review

ID: 251600611

Top