Skip to content

Research at St Andrews

Keeping momentum with a mouthful of water: behavior and kinematics of humpback whale lunge feeding

Research output: Contribution to journalArticle

DOI

Abstract

Rorqual baleen whales lunge feed by engulfment of tons of prey-laden water in a large and expandable buccal pouch. According to prior interpretations, feeding rorquals are brought to a near-halt at the end of each lunge by drag forces primarily generated by the open mouth. Accelerating the body from a standstill is energetically costly and is purported to be the key factor determining oxygen consumption in lunge-feeding rorquals, explaining the shorter dive times than expected given their sizes. Here, we use multi-sensor archival tags (DTAGs) sampling at high rates in a fine-scale kinematic study of lunge feeding to examine the sequence of events within lunges and how energy may be expended and conserved in the process of prey capture. Analysis of 479 lunges from five humpback whales reveals that the whales accelerate as they acquire prey, opening their gape in synchrony with strong fluke strokes. The high forward speed (mean depth rate: 2.0±0.32 m s−1) during engulfment serves both to corral active prey and to expand the ventral margin of the buccal pouch and so maximize the engulfed water volume. Deceleration begins after mouth opening when the pouch nears full expansion and momentum starts to be transferred to the engulfed water. Lunge-feeding humpback whales time fluke strokes throughout the lunge to impart momentum to the engulfed water mass and so avoid a near or complete stop, but instead continue to glide at ~1–1.5 m s−1 after the lunge has ended. Subsequent filtration and prey handling appear to take an average of 46 s and are performed in parallel with re-positioning for the next lunge.
Close

Details

Original languageEnglish
Pages (from-to)3786-3798
JournalJournal of Experimental Biology
Volume215
DOIs
Publication statusPublished - 1 Nov 2012

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. A miniature biomimetic sonar and movement tag to study the biotic environment and predator-prey interactions in aquatic animals

    Goulet, P., Guinet, C., Swift, R., Madsen, P. T. & Johnson, M., 20 May 2019, In : Deep Sea Research Part I: Oceanographic Research Papers. In press

    Research output: Contribution to journalArticle

  2. Long-term sound and movement recording tags to study natural behavior and reaction to ship noise of seals

    Mikkelsen, L., Johnson, M., Wisniewska, D. M., van Neer, A., Siebert, U., Madsen, P. T. & Teilmann, J., 6 Feb 2019, In : Ecology and Evolution. Early View, 14 p.

    Research output: Contribution to journalArticle

  3. Advances in research on the impacts of anti-submarine sonar on beaked whales

    Bernaldo De Quirós, Y., Fernandez, A., Baird, R. W., Brownell, R. L., Aguilar De Soto, N., Allen, D., Arbelo, M., Arregui, M., Costidis, A., Fahlman, A., Frantzis, A., Gulland, F. M. D., Iñíguez, M., Johnson, M., Komnenou, A., Koopman, H., Pabst, D. A., Roe, W. D., Sierra, E., Tejedor, M. & 1 othersSchorr, G., 30 Jan 2019, In : Proceedings of the Royal Society B: Biological Sciences. 286, 1895, 20182533.

    Research output: Contribution to journalReview article

  4. Dolphin echolocation behaviour during active long-range target approaches

    Ladegaard, M., Mulsow, J., Houser, D. S., Jensen, F. H., Johnson, M., Madsen, P. T. & Finneran, J. J., 25 Jan 2019, In : Journal of Experimental Biology. 222, 12 p., jeb189217.

    Research output: Contribution to journalArticle

  5. A 2.6-gram sound and movement tag for studying the acoustic scene and kinematics of echolocating bats

    Stidsholt, L., Johnson, M., Beedholm, K., Jakobsen, L., Kugler, K., Brinkløv, S., Salles, A., Moss, C. F. & Madsen, P. T., Jan 2019, In : Methods in Ecology and Evolution. 10, 1, p. 48-58 11 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Behavioral responses of individual blue whales (Balaenoptera musculus) to mid-frequency military sonar

    Southall, B., DeRuiter, S., Friedlaender, A., Stimpert, A., Goldbogen, J., Hazen, E., Casey, C., Fregosi, S., Cade, D., Allen, A., Harris, C. M., Schorr, G., Moretti, D., Guan, S. & Calambokidis, J., Mar 2019, In : Journal of Experimental Biology. 222, 15 p., jeb190637.

    Research output: Contribution to journalArticle

  2. Dolphin echolocation behaviour during active long-range target approaches

    Ladegaard, M., Mulsow, J., Houser, D. S., Jensen, F. H., Johnson, M., Madsen, P. T. & Finneran, J. J., 25 Jan 2019, In : Journal of Experimental Biology. 222, 12 p., jeb189217.

    Research output: Contribution to journalArticle

  3. No experimental evidence of stress-induced hyperthermia in zebrafish (Danio rerio)

    Jones, N. A. R., Mendo, T., Broell, F. & Webster, M. M., 24 Jan 2019, In : Journal of Experimental Biology. 222, 2, 8 p., jeb.192971.

    Research output: Contribution to journalArticle

  4. Dive heart rate in harbour porpoises is influenced by exercise and expectations

    McDonald, B., Johnson, M. & Madsen, P., 9 Jan 2018, In : Journal of Experimental Biology. 221, 1, jeb168740.

    Research output: Contribution to journalArticle

ID: 47630582