Skip to content

Research at St Andrews

Kinetics and mechanism of the hydrolysis and rearrangement processes within the assembly-disassembly-organization-reassembly synthesis of zeolites

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

Susan Elizabeth Henkelis, Michal Mazur, Cameron Mark Rice, Paul Stewart Wheatley, Sharon E. Ashbrook, Russell Edward Morris

School/Research organisations

Abstract

The hydrolysis (disassembly, D) and rearrangement (organization, O) steps of the assembly-disassembly-organization-reassembly (ADOR) process for the synthesis of zeolites have been studied. Germanium–rich UTL was subjected to hydrolysis conditions in water to understand the effects of temperature (100, 92, 85, 81, 77, and 70 °C). Samples were taken periodically over an 8–37 h period and each sample was analyzed by powder X-ray diffraction. The results show that the hydrolysis step is solely dependent on the presence of liquid water, whereas the rearrangement is dependent on the temperature of the system. The kinetics have been investigated using the Avrami-Erofeev model. With increasing temperature, an increase in rate of reaction for the rearrangement step was observed and the Arrhenius equation was used to ascertain an apparent activation energy for the rearrangement from the kinetic product of the disassembly (IPC-1P) to the thermodynamic product of the rearrangement (IPC-2P). From this information a mechanism for this transformation can be postulated.
Close

Details

Original languageEnglish
Pages (from-to)4453-4459
Number of pages7
JournalJournal of the American Chemical Society
Volume141
Issue number10
Early online date20 Feb 2019
DOIs
Publication statusPublished - 13 Mar 2019

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Following the unusual breathing behaviour of 17O-enriched mixed-metal (Al,Ga)-MIL-53 using NMR crystallography

    Rice, C. M., Davis, Z. H., McKay, D., Bignami, G. P. M., Chitac, R. G., Dawson, D. M., Morris, R. E. & Ashbrook, S. E., 14 Jul 2020, In : Physical Chemistry Chemical Physics. 22, 26, p. 14514-14526 13 p.

    Research output: Contribution to journalArticle

  2. Mechanomechanically assisted hydrolysis in the ADOR process

    Rainer, D. N., Rice, C. M., Warrender, S. J., Ashbrook, S. E. & Morris, R. E., 15 Jun 2020, In : Chemical Science. Advance Article, 10 p.

    Research output: Contribution to journalArticle

  3. Fast room temperature lability of aluminosilicate zeolites

    Heard, C. J., Grajciar, L., Rice, C. M., Pugh, S. M., Nachtigall, P., Ashbrook, S. E. & Morris, R. E., 16 Oct 2019, In : Nature Communications. 10, 7 p., 4690.

    Research output: Contribution to journalArticle

  4. 13C pNMR of “crumple zone” Cu(II) isophthalate metal-organic frameworks

    Dawson, D. M., Sansome, C. E. F., McHugh, L. N., McPherson, M. J., McCormick McPherson, L. J., Morris, R. E. & Ashbrook, S. E., 14 May 2019, In : Solid State Nuclear Magnetic Resonance. In press

    Research output: Contribution to journalArticle

  5. A procedure for identifying possible products in the Assembly-Disassembly-Organisation-Reassembly (ADOR) synthesis of zeolites

    Henkelis, S. E., Mazur, M., Rice, C. M., Bignami, G. P. M., Wheatley, P. S., Ashbrook, S. E., Čejka, J. & Morris, R. E., 25 Jan 2019, In : Nature Protocols. 14 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Journal of the American Chemical Society (Journal)

    David Trevor Richens (Editor)

    2005 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. A deep blue B,N-doped heptacene emitter that shows both thermally activated delayed fluorescence and delayed fluorescence by triplet triplet annihilation

    Madayanad Suresh, S., Duda, E., Hall, D., Yao, Z., Bagnich, S., Slawin, A. M. Z., Bässler, H., Beljonne, D., Buck, M., Olivier, Y., Köhler, A. & Zysman-Colman, E., 5 Mar 2020, In : Journal of the American Chemical Society. Just Accepted

    Research output: Contribution to journalArticle

  2. Difluorocarbene generation from TMSCF3: kinetics and mechanism of NaI-mediated and Si-induced anionic chain reactions

    García-Domínguez, A., West, T. H., Primozic, J. J., Grant, K. M., Johnston, C. P., Cumming, G. G., Leach, A. G. & Lloyd-Jones, G. C., 26 Aug 2020, In : Journal of the American Chemical Society. 142, 34, p. 14649-14663

    Research output: Contribution to journalArticle

  3. Encoding multiple reactivity modes within a single synthetic replicator

    Robertson, C. C., Kosikova, T. & Philp, D., 15 May 2020, In : Journal of the American Chemical Society. Just Accepted

    Research output: Contribution to journalArticle

  4. Facile, room-temperature 17O enrichment of zeolite frameworks revealed by solid-state NMR spectroscopy

    Pugh, S. M., Wright, P. A., Law, D., Thompson, N. & Ashbrook, S. E., 15 Jan 2020, In : Journal of the American Chemical Society. 142, 2, p. 900-906 7 p.

    Research output: Contribution to journalArticle

  5. Hydrogenative depolymerization of nylons

    Kumar, A., von Wolff, N., Rauch, M., Zou, Y-Q., Shmul, G., Ben-David, Y., Leitus, G., Avram, L. & Milstein, D., 19 Aug 2020, In : Journal of the American Chemical Society. 142, 33, p. 14267-14275

    Research output: Contribution to journalArticle

ID: 258120663

Top