Skip to content

Research at St Andrews

Level set Cox processes

Research output: Contribution to journalArticle

Abstract

An extension of the popular log-Gaussian Cox process (LGCP) model for spatial point patterns is proposed for data exhibiting fundamentally different behaviors in different subregions of the spatial domain. The aim of the analyst might be either to identify and classify these regions, to perform kriging, or to derive some properties of the parameters driving the random field in one or several of the subregions. The extension is based on replacing the latent Gaussian random field in the LGCP by a latent spatial mixture model specified using a categorically valued random field. This classification is defined through level set operations on a Gaussian random field and allows for standard stationary covariance structures, such as the Matérn family, to be used to model random fields with some degree of general smoothness but also occasional and structured sharp discontinuities.

A computationally efficient MCMC method is proposed for Bayesian inference and we show consistency of finite dimensional approximations of the model. Finally, the model is fitted to point pattern data derived from a tropical rainforest on Barro Colorado island, Panama. We show that the proposed model is able to capture behavior for which inference based on the standard LGCP is biased.
Close

Details

Original languageEnglish
Pages (from-to)169-193
JournalSpatial Statistics
Volume28
Early online date4 Apr 2018
DOIs
Publication statusPublished - Dec 2018

    Research areas

  • Point process, Cox process, Level set inversion, Classification, Gaussian fields

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Careful prior specification avoids incautious inference for log-Gaussian Cox point processes

    Sørbye, S., Illian, J. B., Simpson, D. P., Burlsem, D. & Rue, H., Apr 2019, In : Journal of the Royal Statistical Society: Series C (Applied Statistics). 68, 3, p. 543-564

    Research output: Contribution to journalArticle

  2. inlabru: an R package for Bayesian spatial modelling from ecological survey data

    Bachl, F. E., Lindgren, F., Borchers, D. L. & Illian, J. B., 21 Mar 2019, In : Methods in Ecology and Evolution. Early View, 7 p.

    Research output: Contribution to journalArticle

  3. Understanding species distribution in dynamic populations: a new approach using spatio‐temporal point process models

    Soriano-Redondo, A., Jones-Todd, C. M., Bearhop, S., Hilton, G. M., Lock, L., Stanbury, A., Votier, S. C. & Illian, J. B., 4 Mar 2019, In : Ecography. Early View

    Research output: Contribution to journalArticle

  4. Non-stationary Gaussian models with physical barriers

    Bakka, H., Vanhatalo, J., Illian, J. B., Simpson, D. & Rue, H., 18 Jan 2019, In : Spatial Statistics. In press

    Research output: Contribution to journalArticle

  5. Accounting for preferential sampling in species distribution models

    Pennino, M. G., Paradinas, I., Illian, J. B., Muñoz, F., Bellido, J. M., López-Quílez, A. & Conesa, D., 1 Jan 2019, In : Ecology and Evolution. 9, 1, p. 653-663 11 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Non-stationary Gaussian models with physical barriers

    Bakka, H., Vanhatalo, J., Illian, J. B., Simpson, D. & Rue, H., 18 Jan 2019, In : Spatial Statistics. In press

    Research output: Contribution to journalArticle

  2. A changepoint analysis of spatio-temporal point processes

    Altieri, L., Scott, E. M., Cocchi, D. & Illian, J. B., 2015, In : Spatial Statistics.

    Research output: Contribution to journalArticle

ID: 252545552