Skip to content

Research at St Andrews

Light activated escape circuits: a behavior and neurophysiology lab module using Drosophila optogenetics

Research output: Contribution to journalArticle

Author(s)

Joshua S. Titlow, Bruce R. Johnson, Stefan R. Pulver

School/Research organisations

Abstract

The neural networks that control escape from predators often show very clear relationships between defined sensory inputs and stereotyped motor outputs. This feature provides unique opportunities for researchers, but it also provides novel opportunities for neuroscience educators. Here we introduce new teaching modules using adult Drosophila that have been engineered to express csChrimson, a red-light sensitive channelrhodopsin, in specific sets of neurons and muscles mediating visually guided escape behaviors. This lab module consists of both behavior and electrophysiology experiments that explore the neural basis of flight escape. Three preparations are described that demonstrate photo-activation of the giant fiber circuit and how to quantify these behaviors. One of the preparations is then used to acquire intracellular electrophysiology recordings from different flight muscles. The diversity of action potential waveforms and firing frequencies observed in the flight muscles make this a rich preparation to study the ionic basic of cellular excitability. By activating different cells within the giant fiber pathway we also demonstrate principles of synaptic transmission and neural circuits. Beyond conveying core neurobiological concepts it is also expected that using these cutting edge techniques will enhance student motivation and attitudes towards biological research. Data collected from students and educators who have been involved in development of the module are presented to support this notion.
Close

Details

Original languageEnglish
Pages (from-to)A166–A173
JournalJournal of Undergraduate Neuroscience Education
Volume13
Issue number3
Publication statusPublished - 7 Jul 2015

    Research areas

  • Optogenetics, Drosophila, Giant fiber escape, Flight muscle, Electrophysiology, Neuroethology

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Narrowband organic light-emitting diodes for fluorescence microscopy and calcium imaging

    Murawski, C., Mischok, A., Booth, J. H., Kumar, J. D., Archer, E., Tropf, L. C., Keum, C., Deng, Y., Yoshida, K., Samuel, I. D. W., Schubert, M., Pulver, S. & Gather, M. C., 5 Sep 2019, In : Advanced Materials. Early View, 8 p.

    Research output: Contribution to journalArticle

  2. Organic light-emitting diodes for optogenetic stimulation of Drosophila larvae

    Murawski, C., Morton, A., Samuel, I. D. W., Pulver, S. & Gather, M. C., 14 Nov 2016, Proceedings, Light, Energy and the Environment. Optical Society of American (OSA), 3 p. JW4A.9. (Fourier Transform Spectroscopy).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  3. Selective inhibition mediates the sequential recruitment of motor pools: Correction

    Zwart, M. F., Pulver, S., Truman, J., Fushiki, A., Cardona, A. & Landgraf, M., 17 Aug 2016, In : Neuron. 91, 4, p. 944

    Research output: Contribution to journalArticle

  4. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour

    Morton, A., Murawski, C., Pulver, S. & Gather, M. C., 3 Aug 2016, In : Scientific Reports. 6, 8 p., 31117.

    Research output: Contribution to journalArticle

  5. Selective inhibition mediates the sequential recruitment of motor pools

    Zwart, M. F., Pulver, S. R., Truman, J. W., Fushiki, A., Fetter, R. D., Cardona, A. & Landgraf, M., 3 Aug 2016, In : Neuron. 91, 3, p. 615-628 14 p.

    Research output: Contribution to journalArticle

Related by journal

ID: 194346593

Top