Skip to content

Research at St Andrews

Linking the sounds of dolphins to their locations and behavior using video and multichannel acoustic recordings

Research output: Contribution to journalArticle

DOI

Standard

Linking the sounds of dolphins to their locations and behavior using video and multichannel acoustic recordings. / Thomas, R E ; Fristrup, K M ; Tyack, P L .

In: Journal of the Acoustical Society of America, Vol. 112, No. 4, 10.2002, p. 1692-1701.

Research output: Contribution to journalArticle

Harvard

Thomas, RE, Fristrup, KM & Tyack, PL 2002, 'Linking the sounds of dolphins to their locations and behavior using video and multichannel acoustic recordings' Journal of the Acoustical Society of America, vol. 112, no. 4, pp. 1692-1701. https://doi.org/10.1121/1.1494805

APA

Thomas, R. E., Fristrup, K. M., & Tyack, P. L. (2002). Linking the sounds of dolphins to their locations and behavior using video and multichannel acoustic recordings. Journal of the Acoustical Society of America, 112(4), 1692-1701. https://doi.org/10.1121/1.1494805

Vancouver

Thomas RE, Fristrup KM, Tyack PL. Linking the sounds of dolphins to their locations and behavior using video and multichannel acoustic recordings. Journal of the Acoustical Society of America. 2002 Oct;112(4):1692-1701. https://doi.org/10.1121/1.1494805

Author

Thomas, R E ; Fristrup, K M ; Tyack, P L . / Linking the sounds of dolphins to their locations and behavior using video and multichannel acoustic recordings. In: Journal of the Acoustical Society of America. 2002 ; Vol. 112, No. 4. pp. 1692-1701.

Bibtex - Download

@article{58fcb80e2f064dbbbb400cfcab5275c4,
title = "Linking the sounds of dolphins to their locations and behavior using video and multichannel acoustic recordings",
abstract = "It is difficult to attribute underwater animal sounds to the individuals producing them. This paper presents a system developed to solve this problem for dolphins by linking acoustic locations of the sounds of captive bottlenose dolphins with an overhead video image. A time-delay beamforming algorithm localized dolphin sounds obtained from an array of hydrophones dispersed around a lagoon. The localized positions of vocalizing dolphins were projected onto video images. The performance of the system was measured for artificial calibration signals as well as for dolphin sounds. The performance of the system for calibration signals was analyzed in terms of acoustic localization error, video projection error, and combined acoustic localization and video error. The 95{\%} confidence bounds for these were 1.5, 2.1, and 2.1 m, respectively. Performance of the system was analyzed for three types of dolphin sounds: echolocation clicks, whistles, and burst-pulsed sounds. The mean errors for these were 0.8, 1.3, and 1.3 m, respectively. The 95{\%} confidence bound for all vocalizations was 2.8 m, roughly the length of an adult bottlenose dolphin. This system represents a significant advance for studying the function of vocalizations of marine animals in relation to their context, as the sounds can be identified to the vocalizing dolphin and linked to its concurrent behavior. (C) 2002 Acoustical Society of America.",
keywords = "BOTTLE-NOSED DOLPHINS, WHALES ORCINUS-ORCA, TURSIOPS-TRUNCATUS, HYDROPHONE ARRAY, WHISTLES, LOCALIZATION, MULTIPATH, TIMES",
author = "Thomas, {R E} and Fristrup, {K M} and Tyack, {P L}",
year = "2002",
month = "10",
doi = "10.1121/1.1494805",
language = "English",
volume = "112",
pages = "1692--1701",
journal = "Journal of the Acoustical Society of America",
issn = "0001-4966",
publisher = "Acoustical Society of America",
number = "4",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Linking the sounds of dolphins to their locations and behavior using video and multichannel acoustic recordings

AU - Thomas, R E

AU - Fristrup, K M

AU - Tyack, P L

PY - 2002/10

Y1 - 2002/10

N2 - It is difficult to attribute underwater animal sounds to the individuals producing them. This paper presents a system developed to solve this problem for dolphins by linking acoustic locations of the sounds of captive bottlenose dolphins with an overhead video image. A time-delay beamforming algorithm localized dolphin sounds obtained from an array of hydrophones dispersed around a lagoon. The localized positions of vocalizing dolphins were projected onto video images. The performance of the system was measured for artificial calibration signals as well as for dolphin sounds. The performance of the system for calibration signals was analyzed in terms of acoustic localization error, video projection error, and combined acoustic localization and video error. The 95% confidence bounds for these were 1.5, 2.1, and 2.1 m, respectively. Performance of the system was analyzed for three types of dolphin sounds: echolocation clicks, whistles, and burst-pulsed sounds. The mean errors for these were 0.8, 1.3, and 1.3 m, respectively. The 95% confidence bound for all vocalizations was 2.8 m, roughly the length of an adult bottlenose dolphin. This system represents a significant advance for studying the function of vocalizations of marine animals in relation to their context, as the sounds can be identified to the vocalizing dolphin and linked to its concurrent behavior. (C) 2002 Acoustical Society of America.

AB - It is difficult to attribute underwater animal sounds to the individuals producing them. This paper presents a system developed to solve this problem for dolphins by linking acoustic locations of the sounds of captive bottlenose dolphins with an overhead video image. A time-delay beamforming algorithm localized dolphin sounds obtained from an array of hydrophones dispersed around a lagoon. The localized positions of vocalizing dolphins were projected onto video images. The performance of the system was measured for artificial calibration signals as well as for dolphin sounds. The performance of the system for calibration signals was analyzed in terms of acoustic localization error, video projection error, and combined acoustic localization and video error. The 95% confidence bounds for these were 1.5, 2.1, and 2.1 m, respectively. Performance of the system was analyzed for three types of dolphin sounds: echolocation clicks, whistles, and burst-pulsed sounds. The mean errors for these were 0.8, 1.3, and 1.3 m, respectively. The 95% confidence bound for all vocalizations was 2.8 m, roughly the length of an adult bottlenose dolphin. This system represents a significant advance for studying the function of vocalizations of marine animals in relation to their context, as the sounds can be identified to the vocalizing dolphin and linked to its concurrent behavior. (C) 2002 Acoustical Society of America.

KW - BOTTLE-NOSED DOLPHINS

KW - WHALES ORCINUS-ORCA

KW - TURSIOPS-TRUNCATUS

KW - HYDROPHONE ARRAY

KW - WHISTLES

KW - LOCALIZATION

KW - MULTIPATH

KW - TIMES

U2 - 10.1121/1.1494805

DO - 10.1121/1.1494805

M3 - Article

VL - 112

SP - 1692

EP - 1701

JO - Journal of the Acoustical Society of America

T2 - Journal of the Acoustical Society of America

JF - Journal of the Acoustical Society of America

SN - 0001-4966

IS - 4

ER -

Related by author

  1. A response to scientific and societal needs for marine biological observations

    Bax, N., Miloslavich, P., Muller-Karger, F. E., Allain, V., Appeltans, W., Batten, S. D., Benedetti-Cecchi, L., Buttigieg, P. L., Chiba, S., Costa, D. P., Duffy, J. E., Dunn, D. C., Johnson, C. R., Kudela, R. M., Obura, D., Rebelo, L-M., Shin, Y-J., Simmons, S. E. & Tyack, P. L., 17 Jul 2019, In : Frontiers in Marine Science. 6, 22 p., 395.

    Research output: Contribution to journalArticle

  2. Evidence for discrimination between feeding sounds of familiar fish and unfamiliar mammal-eating killer whale ecotypes by long-finned pilot whales

    Curé, C., Isojunno, S., I Vester, H., Visser, F., Oudejans, M., Biassoni, N., Massenet, M., Barluet de Beauchesne, L., J Wensveen, P., Sivle, L. D., Tyack, P. L. & Miller, P. J. O., 22 Jun 2019, In : Animal Cognition. First Online, 20 p.

    Research output: Contribution to journalArticle

  3. Foraging rates of ram-filtering North Atlantic right whales

    van der Hoop, J. M., Nousek-McGregor, A. E., Nowacek, D. P., Parks, S. E., Tyack, P. & Madsen, P. T., 10 Jun 2019, In : Functional Ecology. Early View, 18 p.

    Research output: Contribution to journalArticle

  4. Northern bottlenose whales in a pristine environment respond strongly to close and distant navy sonar signals

    Wensveen, P. J., Isojunno, S., Hansen, R. R., Von Benda-beckmann, A. M., Kleivane, L., Van Ijsselmuide, S., Lam, F. A., Kvadsheim, P. H., Deruiter, S. L., Curé, C., Narazaki, T., Tyack, P. L. & Miller, P. J. O., 20 Mar 2019, In : Proceedings of the Royal Society B: Biological Sciences. 286, 1899, 10 p., 20182592.

    Research output: Contribution to journalArticle

  5. Diving behavior and fine-scale kinematics of free-ranging Risso’s dolphins foraging in shallow and deep-water habitats

    Arranz, P., Benoit-Bird, K., Friedlaender, A. S., Hazen, E. L., Goldbogen, J. A., Stimpert, A. K., De Ruiter, S. L., Calambokidis, J., Southall, B., Fahlman, A. & Tyack, P. L., 12 Mar 2019, In : Frontiers in Ecology and Evolution. 7, 15 p., 53.

    Research output: Contribution to journalArticle

Related by journal

  1. Predicting acoustic dose associated with marine mammal behavioural responses to sound as detected with fixed acoustic recorders and satellite tags

    von Benda-Beckmann, A. M., Wensveen, P. J., Prior, M., Ainslie, M. A., Hansen, R. R., Isojunno, S., Lam, F. P. A., Kvadsheim, P. H. & Miller, P. J. O., 20 Mar 2019, In : Journal of the Acoustical Society of America. 145, 3, p. 1401-1416 16 p.

    Research output: Contribution to journalArticle

  2. Fin whale density and distribution estimation using acoustic bearings derived from sparse arrays

    Harris, D. V., Miksis-Olds, J. L., Vernon, J. A. & Thomas, L., May 2018, In : Journal of the Acoustical Society of America. 143, 5, p. 2980-2993 14 p.

    Research output: Contribution to journalArticle

  3. Modelling the broadband propagation of marine mammal echolocation clicks for click-based population density estimates

    von Benda-Beckmann, A., Thomas, L. J., Tyack, P. L. & Ainslie, M., Feb 2018, In : Journal of the Acoustical Society of America. 143, 2, p. 954-967

    Research output: Contribution to journalArticle

  4. Two unit analysis of Sri Lankan pygmy blue whale song over a decade

    Miksis-Olds, J. L., Nieukirk, S. L. & Harris, D. V., 31 Dec 2018, In : Journal of the Acoustical Society of America. 144, 6, p. 3618-3626 9 p.

    Research output: Contribution to journalArticle

ID: 17104990