Skip to content

Research at St Andrews

Long frontal waves and dynamic scaling in freely evolving equivalent barotropic flow

Research output: Contribution to journalArticle

DOI

Open Access Status

  • Embargoed (until 18/09/19)

Abstract

We present a scaling theory that links the frequency of long frontal waves to the kinetic energy decay rate and inverse transfer of potential energy in freely evolving equivalent barotropic turbulence. The flow energy is predominantly potential, and the streamfunction makes the dominant contribution to potential vorticity (PV) over most of the domain, except near PV fronts of width O(LD), where LD is the Rossby deformation length. These fronts bound large vortices within which PV is well-mixed and arranged into a staircase structure. The jets collocated with the fronts support long-wave undulations, which facilitate collisions and mergers between the mixed regions, implicating the frontal dynamics in the growth of potential-energy-containing flow features. Assuming the mixed regions grow self-similarly in time and using the dispersion relation for long frontal waves (Nycander et al., Phys. Fluids A, vol. 5, 1993, pp. 1089–1091) we predict that the total frontal length and kinetic energy decay like t-1/3, while the length scale of the staircase vortices grows like t1/3 . High-resolution simulations confirm our predictions.
Close

Details

Original languageEnglish
Article numberR3
Number of pages12
JournalJournal of Fluid Mechanics
Volume866
Early online date18 Mar 2019
DOIs
Publication statusPublished - 10 May 2019

    Research areas

  • Quasi-geostrophic flows, Vortex dynamics

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Vortex scaling ranges in two-dimensional turbulence

    Burgess, B. H., Dritschel, D. G. & Scott, R. K., Nov 2017, In : Physics of Fluids. 29, 11, 12 p., 111104.

    Research output: Contribution to journalArticle

  2. Comparison of the Moist Parcel-In-Cell (MPIC) model with large-eddy simulation for an idealized cloud

    Böing, S. J., Dritschel, D. G., Parker, D. J. & Blyth, A. M., 29 Apr 2019, In : Quarterly Journal of the Royal Meteorological Society. In press, 17 p.

    Research output: Contribution to journalArticle

  3. On the regularity of the Green-Naghdi equations for a rotating shallow fluid layer

    Dritschel, D. G. & Jalali, M. R., 25 Apr 2019, In : Journal of Fluid Mechanics. 865, p. 100-136

    Research output: Contribution to journalArticle

Related by journal

  1. Journal of Fluid Mechanics (Journal)

    David Gerard Dritschel (Editor)
    2005 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. On the regularity of the Green-Naghdi equations for a rotating shallow fluid layer

    Dritschel, D. G. & Jalali, M. R., 25 Apr 2019, In : Journal of Fluid Mechanics. 865, p. 100-136

    Research output: Contribution to journalArticle

  2. Scale-invariant singularity of the surface quasigeostrophic patch

    Scott, R. K. & Dritschel, D. G., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, 12 p., R2.

    Research output: Contribution to journalArticle

  3. The stability and nonlinear evolution of quasi-geostrophic toroidal vortices

    Reinaud, J. N. & Dritschel, D. G., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, p. 60-78

    Research output: Contribution to journalArticle

  4. Three-dimensional quasi-geostrophic vortex equilibria with m−fold symmetry

    Reinaud, J. N., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, p. 32-59

    Research output: Contribution to journalArticle

ID: 256954972