Skip to content

Research at St Andrews

Long-term planetary habitability and the carbonate-silicate cycle

Research output: Contribution to journalArticlepeer-review

DOI

Open Access permissions

Open

Author(s)

Andrew J. Rushby, Martin Johnson, Benjamin J.W. Mills, Andrew J. Watson, Mark W. Claire

School/Research organisations

Abstract

The potential habitability of an exoplanet is traditionally assessed by determining whether its orbit falls within the circumstellar "habitable zone" of its star, defined as the distance at which water could be liquid on the surface of a planet (Kopparapu et al., 2013). Traditionally, these limits are determined by radiative-convective climate models, which are used to predict surface temperatures at user-specified levels of greenhouse gases. This approach ignores the vital question of the (bio)geochemical plausibility of the proposed chemical abundances. Carbon dioxide is the most important greenhouse gas in Earth's atmosphere in terms of regulating planetary temperature, with the long-term concentration controlled by the balance between volcanic outgassing and the sequestration of CO2 via chemical weathering and sedimentation, as modulated by ocean chemistry, circulation, and biological (microbial) productivity. We developed a model that incorporates key aspects of Earth's short- and long-term biogeochemical carbon cycle to explore the potential changes in the CO2 greenhouse due to variance in planet size and stellar insolation. We find that proposed changes in global topography, tectonics, and the hydrological cycle on larger planets result in proportionally greater surface temperatures for a given incident flux. For planets between 0.5 and 2 R, the effect of these changes results in average global surface temperature deviations of up to 20 K, which suggests that these relationships must be considered in future studies of planetary habitability.
Close

Details

Original languageEnglish
Pages (from-to)469-480
Number of pages12
JournalAstrobiology
Volume18
Issue number5
Early online date1 May 2018
DOIs
Publication statusPublished - 1 May 2018

    Research areas

  • Planets, Atmospheres, Carbon dioxide, Biogeochemistry

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Photochemical modelling of atmospheric oxygen levels confirms two stable states

    Gregory, B. S., Claire, M. & Rugheimer, S., 1 May 2021, In: Earth and Planetary Science Letters. 561, 12 p., 116818.

    Research output: Contribution to journalArticlepeer-review

  2. Spatial variability of microbial communities and salt distributions across a latitudinal aridity gradient in the Atacama Desert

    Shen, J., Wyness, A., Claire, M. & Zerkle, A., 13 Jan 2021, In: Microbial Ecology. First Online, 17 p.

    Research output: Contribution to journalArticlepeer-review

  3. Sedimentology and isotope geochemistry of transitional evaporitic environments within arid continental settings: from erg to saline lakes

    Pettigrew, R. P., Priddy, C., Clarke, S. M., Warke, M. R., Stüeken, E. E. & Claire, M. W., 20 Dec 2020, In: Sedimentology. Early View

    Research output: Contribution to journalArticlepeer-review

  4. Unravelling biogeochemical phosphorus dynamics in hyperarid Mars-analogue soils using stable oxygen isotopes in phosphate

    Shen, J., Smith, A., Claire, M. & Zerkle, A. L., Nov 2020, In: Geobiology. 18, 6, p. 760-779 20 p.

    Research output: Contribution to journalArticlepeer-review

  5. The Great Oxidation Event preceded a Paleoproterozoic "snowball Earth"

    Warke, M. R., Di Rocco, T., Zerkle, A. L., Lepland, A., Prave, T., Martin, A., Ueno, Y., Condon, D. & Claire, M., 16 Jun 2020, In: Proceedings of the National Academy of Sciences of the United States of America. 117, 24, p. 13314-13320 7 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Growth, viability, and death of planktonic and biofilm Sphingomonas desiccabilis in simulated martian brines

    Stevens, A. H., Childers, D., Fox-Powell, M., Nicholson, N., Jhoti, E. & Cockell, C. S., 2 Jan 2019, In: Astrobiology. 19, 1, p. 87-98 12 p.

    Research output: Contribution to journalArticlepeer-review

  2. Evaluation of the Tindouf Basin region in Southern Morocco as an analog site for soil geochemistry on Noachian Mars

    Oberlin, E. A., Claire, M. W. & Kounaves, S., 9 Feb 2018, In: Astrobiology. 18, 8

    Research output: Contribution to journalArticlepeer-review

  3. Exoplanet biosignatures: a review of remotely detectable signs of life

    Schwieterman, E. W., Kiang, N. Y., Parenteau, M. N., Harman, C. E., DasSarma, S., Fisher, T. M., Arney, G. N., Hartnett, H. E., Reinhard, C. T., Olson, S. L., Meadows, V. S., Cockell, C. S., Walker, S. I., Grenfell, J. L., Hegde, S., Rugheimer, S., Hu, R. & Lyons, T. W., 4 May 2018, In: Astrobiology. First Online, 46 p.

    Research output: Contribution to journalReview articlepeer-review

  4. The UK Centre for Astrobiology: a virtual astrobiology centre. Accomplishments and lessons learned, 2011-2016

    Cockell, C. S., Biller, B., Bryce, C., Cousins, C., Direito, S., Forgan, D., Fox-Powell, M., Harrison, J., Landenmark, H., Nixon, S., Payler, S. J., Rice, K., Samuels, T., Schwendner, P., Stevens, A., Nicholson, N. & Wadsworth, J., 29 Jan 2018, In: Astrobiology. 18, 2, 20 p.

    Research output: Contribution to journalArticlepeer-review

ID: 253367037

Top