Skip to content

Research at St Andrews

Mathematical modelling of radiotherapy strategies for early breast cancer

Research output: Contribution to journalArticlepeer-review


Heiko Enderling, Alexander R. A. Anderson, Mark A. J. Chaplain, Alastair J. Munro, Jayant S. Vaidya

School/Research organisations


Targeted intraoperative radiotherapy (Targit) is a new concept of partial breast irradiation where single fraction radiotherapy is delivered directly to the tumour bed. Apart from logistic advantages, this strategy minimizes the risk of missing the tumour bed and avoids delay between surgery and radiotherapy. It is presently being compared with the standard fractionated external beam radiotherapy (EBRT) in randomized trials. In this paper we present a mathematical model for the growth and invasion of a solid tumour into a domain of tissue (in this case breast tissue), and then a model for surgery and radiation treatment of this tumour. We use the established linear-quadratic (LQ) model to compute the survival probabilities for both tumour cells and irradiated breast tissue and then simulate the effects of conventional EBRT and Targit. True local recurrence of the tumour could arise either from stray tumour cells, or the tumour bed that harbours morphologically normal cells having a predisposition to genetic changes, such as a loss of heterozygosity (LOH) in genes that are crucial for tumourigenesis, e.g. tumour suppressor genes (TSGs). Our mathematical model predicts that the single high dose of radiotherapy delivered by Targit would result in eliminating all these sources of recurrence, whereas the fractionated EBRT would eliminate stray tumour cells, but allow (by virtue of its very schedule) the cells with LOH in TSGs or cell-cycle checkpoint genes to pass on low-dose radiation-induced DNA damage and consequently mutations that may favour the development of a new tumour. The mathematical model presented here is an initial attempt to model a biologically complex phenomenon that has until now received little attention in the literature and provides a ?proof of principle? that it is possible to produce clinically testable hypotheses on the effects of different approaches of radiotherapy for breast cancer.


Original languageEnglish
Pages (from-to)158-171
Number of pages14
JournalJournal of Theoretical Biology
Issue number1
Publication statusPublished - Jul 2006

    Research areas

  • Mathematical modelling, Breast cancer, Radiotherapy, Targit, Intraoperative radiotherapy, Targeted intraoperative radiotherapy (Targit)

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Bystander effects and their implications for clinical radiation therapy: insights from multiscale in silico experiments

    Powathil, G., Munro, A. J., Chaplain, M. A. J. & Swat, M., 21 Jul 2016, In: Journal of Theoretical Biology. 401, p. 1-14

    Research output: Contribution to journalArticlepeer-review

  2. Development of a coupled simulation toolkit for computational radiation biology based on Geant4 and CompuCell3D

    Liu, R., Higley, K., Swat, M., Chaplain, M. A. J., Powathil, G. & Glazier, J., 10 Feb 2021, In: Physics in Medicine and Biology. 66, 4, 20 p., 045026.

    Research output: Contribution to journalArticlepeer-review

  3. Modeling the emergence of phenotypic heterogeneity in vascularized tumors

    Villa, C., Chaplain, M. A. & Lorenzi, T., 2021, In: SIAM Journal on Applied Mathematics. 81, 2, p. 434-453 20 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Journal of Theoretical Biology (Journal)

    Mark Andrew Joseph Chaplain (Editor)

    10 Apr 2017 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Consistency and identifiability of the polymorphism-aware phylogenetic models

    Borges, R. & Kosiol, C., 7 Feb 2020, In: Journal of Theoretical Biology. 486, p. 1-6 6 p., 110074.

    Research output: Contribution to journalArticlepeer-review

  2. Modelling the effects of environmental heterogeneity within the lung on the tuberculosis life-cycle

    Pitcher, M. J., Bowness, R., Dobson, S. A., Eftimie, R. & Gillespie, S. H., 7 Dec 2020, In: Journal of Theoretical Biology. 506, 18 p., 110381.

    Research output: Contribution to journalArticlepeer-review

  3. A theory for investment across defences triggered at different stages of a predator-prey encounter

    Wang, L., Ruxton, G. D., Cornell, S. J., Speed, M. P. & Broom, M., 21 Jul 2019, In: Journal of Theoretical Biology. 473, p. 9-19 11 p.

    Research output: Contribution to journalArticlepeer-review

ID: 206434049