Skip to content

Research at St Andrews

Maximizing the visible light photoelectrochemical activity of B/N-doped anatase TiO2 microspheres with exposed dominant {001} facets

Research output: Research - peer-reviewArticle

DOI

Author(s)

Xingxing Hong, Yuyang Kang, Chao Zhen, Xiangdong Kang, Li-Chang Yin, John T. S. Irvine, Lianzhou Wang, Gang Liu, Hui-Ming Cheng

School/Research organisations

Abstract

Anatase TiO2 microspheres with exposed dominant BBBBB001BBBBB facets were doped with interstitial boron to have a concentration gradient with the maximum concentration at the surface. They were then further doped with substitutional nitrogen by heating in an ammonia atmosphere at different temperatures from 440 to 560°C to give surface N concentrations ranging from 7.03 to 15.47 at%. The optical absorption, atomic and electronic structures and visible-light photoelectrochemical water oxidation activity of these materials were investigated. The maximum activity of the doped TiO2 was achieved at a nitrogen doping temperature of 520°C that gave a high absorbance over the whole visible light region but with no defect-related background absorption.
Close

Details

Original languageEnglish
Pages (from-to)831-838
Number of pages8
JournalScience China Materials
Volume61
Issue number6
Early online date15 Mar 2018
DOIs
StatePublished - Jun 2018

    Research areas

  • Photoelectrochemistry, Red TiO2, Water splitting, Doping

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Framing policy on low emissions vehicles in terms of economic gains: might the most straightforward gain be delivered by supply chain activity to support refuelling?

    Turner, K., Alabi, O., Smith, M., Irvine, J. & Dodds, P. E. 23 May 2018 In : Energy Policy. 119, p. 528-534 7 p.

    Research output: Research - peer-reviewArticle

  2. Performance improvement of a direct carbon solid oxide fuel cell through integrating an Otto heat engine

    Xu, H., Chen, B., Tan, P., Zhang, H., Yuan, J., Irvine, J. T. S. & Ni, M. 1 Jun 2018 In : Energy Conversion and Management. 165, p. 761-770 10 p.

    Research output: Research - peer-reviewArticle

  3. Substitutional carbon‐modified anatase TiO2 decahedral plates directly derived from titanium oxalate crystals via topotactic transition

    Niu, P., Wu, T., Wen, L., Tan, J., Yang, Y., Zheng, S., Liang, Y., Li, F., Irvine, J. T. S., Liu, G., Ma, X. & Cheng, H. 17 May 2018 In : Advanced Materials. 30, 20, 1705999

    Research output: Research - peer-reviewArticle

  4. Nanocrystalline CeO2-δ coated β-MnO2 nanorods with enhanced oxygen transfer property

    Huang, X., Zhao, G., Chang, Y., Wang, G. & Irvine, J. T. S. 15 May 2018 In : Applied Surface Science. 440, p. 20-28

    Research output: Research - peer-reviewArticle

  5. Microplasma-assisted electrochemical synthesis of Co3O4 nanoparticles in absolute ethanol for energy applications

    Ni, C., Carolan, D., Rocks, C., Hui, J., Fang, Z., Padmanaban, D. B., Ni, J-P., Xie, D., Maguire, P., Irvine, J. T. S. & Mariotti, D. 7 May 2018 In : Green Chemistry. 20, 9, p. 2101-2109 9 p.

    Research output: Research - peer-reviewArticle

ID: 252738071