Skip to content

Research at St Andrews

mCCD cl1 cells show plasticity consistent with the ability to transition between principal and intercalated cells

Research output: Contribution to journalArticlepeer-review

Open Access permissions

Open

Author(s)

A. M. Assmus, M. K. Mansley, L. J. Mullins, A. Peter, J. J. Mullins

School/Research organisations

Abstract

The cortical collecting duct of the mammalian kidney plays a critical role in the regulation of body volume, sodium pH, and osmolarity and is composed of two distinct cells types, principal cells and intercalated cells. Each cell type is detectable in the kidney by the localization of specific transport proteins such as aquaporin 2 (Aqp2) and epithelial sodium channel (ENaC) in principal cells and V-ATPase B1 and connexin 30 (Cx30) in intercalated cells. mCCD cl1 cells have been widely used as a mouse principal cell line on the basis of their physiological characteristics. In this study, the mCCD cl1 parental cell line and three sublines cloned from isolated single cells (Ed1, Ed2, and Ed3) were grown on filters to assess their transepithelial resistance, transepithelial voltage, equivalent short circuit current and expression of the cell-specific markers Aqp2, ENaC, V-ATPaseB1, and Cx30. The parental mCCD cl1 cell line presented amiloride-sensitive electrogenic sodium transport indicative of principal cell function; however, immunocytochemistry and RT-PCR showed that some cells expressed the intercalated cell-specific markers V-ATPase B1 and Cx30, including a subset of cells also positive for Aqp2 and ENaC. The three subclonal lines contained cells that were positive for both intercalated and principal cell-specific markers. The vertical transmission of both principal and intercalated cell characteristics via single cell cloning reveals the plasticity of mCCD cl1 cells and a direct lineage relationship between these two physiologically important cell types and is consistent with mCCDcl1 cells being precursor cells.

Close

Details

Original languageEnglish
Pages (from-to)F820-F831
JournalAmerican Journal of Physiology - Renal Physiology
Volume314
Issue number5
DOIs
Publication statusPublished - 1 Jan 2018

    Research areas

  • Bipotential, Cortical collecting duct, Intercalated cells, MCCDcl1, Principal cells

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Prostaglandin E2 stimulates the epithelial sodium channel (ENaC) in cultured mouse cortical collecting duct cells in an autocrine manner

    Mansley, M. K., Niklas, C., Nacken, R., Mandery, K., Glaeser, H., Fromm, M. F., Korbmacher, C. & Bertog, M., 22 May 2020, In: Journal of General Physiology. 152, 8, 15 p., e201912525.

    Research output: Contribution to journalArticlepeer-review

  2. Trichostatin A blocks aldosterone-induced Na+ transport and control of serum- and glucocorticoid-inducible kinase 1 in cortical collecting duct cells

    Mansley, M. K., Roe, A. J., Francis, S. L., Gill, J. H., Bailey, M. A. & Wilson, S. M., 16 Jan 2020, In: British Journal of Pharmacology. 176, 24, p. 4708-4719 12 p.

    Research output: Contribution to journalArticlepeer-review

  3. Glucocorticoid receptor activation stimulates the sodium-chloride cotransporter and influences the diurnal rhythm of its phosphorylation

    Ivy, J. R., Jones, N. K., Costello, H. M., Mansley, M. K., Peltz, T. S., Flatman, P. W. & Bailey, M. A., 2019, In: American Journal of Physiology - Renal Physiology. 317, 6, p. F1536-F1548

    Research output: Contribution to journalArticlepeer-review

  4. Inhibitors of the proteasome stimulate the epithelial sodium channel (ENaC) through SGK1 and mimic the effect of aldosterone

    Mansley, M. K., Korbmacher, C. & Bertog, M., Feb 2018, In: Pflugers Archiv European Journal of Physiology. 470, 2, p. 295-304 10 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Glucocorticoid receptor activation stimulates the sodium-chloride cotransporter and influences the diurnal rhythm of its phosphorylation

    Ivy, J. R., Jones, N. K., Costello, H. M., Mansley, M. K., Peltz, T. S., Flatman, P. W. & Bailey, M. A., 2019, In: American Journal of Physiology - Renal Physiology. 317, 6, p. F1536-F1548

    Research output: Contribution to journalArticlepeer-review

  2. Norepinephrine stimulates the epithelial Na+ channel in cortical collecting duct cells via α2-adrenoceptors

    Mansley, M. K., Neuhuber, W., Korbmacher, C. & Bertog, M., Mar 2015, In: American Journal of Physiology - Renal Physiology. 308, 5, p. F450-F458

    Research output: Contribution to journalArticlepeer-review

ID: 268444794

Top