Skip to content

Research at St Andrews

Mechanism of enhanced performance on a hybrid direct carbon fuel cell using sawdust biofuels

Research output: Contribution to journalArticlepeer-review

Author(s)

Shuangbin Li, Cairong Jiang, Juan Liu, Haoliang Tao, Xie Meng, Paul Connor, Jianing Hui, Shaorong Wang, Jianjun Ma, John T. S. Irvine

School/Research organisations

Abstract

Biomass is expected to play a significant role in power generation in the near future. With the uprising of carbon fuel cells, hybrid direct carbon fuel cells (HDCFCs) show its intrinsic and incomparable advantages in the generation of clean energy with higher efficiency. In this study, two types of biomass treated by physical sieve and pyrolysis from raw sawdust are investigated on an anode-supported HDCFC. The structure and thermal analysis indicate that raw sawdust has well-formed cellulose I phase with very low ash. Electrochemical performance behaviors for sieved and pyrolyzed sawdust combined with various weight ratios of carbonate are compared in N2 and CO2 purge gas. The results show that the power output of sieved sawdust with 789 mWcm−2 is superior to that of pyrolyzed sawdust in CO2 flowing, as well as in N2 flowing. The anode reaction mechanism for the discrepancy of two fuels is explained and the emphasis is also placed on the modified oxygen-reduction cycle mechanism of catalytic effects of Li2CO3 and K2CO3 salts in promoting cell performance.
Close

Details

Original languageEnglish
Pages (from-to)10-16
Number of pages7
JournalJournal of Power Sources
Volume383
Early online date22 Feb 2018
DOIs
Publication statusPublished - 15 Apr 2018

    Research areas

  • Hybrid direct carbon fuel cell, Sieved and pyrolyzed sawdust, Electrochemical performance, Reaction mechanism

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light

    Hui, J., Pestana, C. J., Caux, M., Gunaratne, H. Q. N., Edwards, C., Robertson, P. K. J., Lawton, L. A. & Irvine, J. T. S., 15 Jan 2021, In: Journal of Photochemistry and Photobiology A: Chemistry. 405, 112935.

    Research output: Contribution to journalArticlepeer-review

  2. Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation

    Pestana, C. J., Portela Noronha, J., Hui, J., Edwards, C., Gunaratne, H. Q. N., Irvine, J. T. S., Robertson, P. K. J., Capelo-Neto, J. & Lawton, L. A., 25 Nov 2020, In: Science of the Total Environment. 745, 141154.

    Research output: Contribution to journalArticlepeer-review

  3. High oxide ion and proton conductivity in a disordered hexagonal perovskite

    Fop, S., McCombie, K. S., Wildman, E. J., Skakle, J. M. S., Irvine, J. T. S., Connor, P. A., Savaniu, C., Ritter, C. & Mclaughlin, A. C., Jul 2020, In: Nature Materials. 19, 7, p. 752–757 7 p.

    Research output: Contribution to journalArticlepeer-review

  4. ‘All in one’ photo-reactor pod containing TiO2 coated glass beads and LEDs for continuous photocatalytic destruction of cyanotoxins in water

    Gunaratne, N., Pestana, C., Skillen, N., Hui, J., Rajendran, S., Edwards, C., Irvine, J. T. S., Robertson, P. & Lawton, L., Apr 2020, In: Environmental Science: Water Research & Technology. 6, 4, p. 945-950 5 p.

    Research output: Contribution to journalArticlepeer-review

  5. Nanostructured perovskite solar cells

    McDonald, C., Ni, C., Maguire, P., Connor, P., Irvine, J. T. S., Mariotti, D. & Svrcek, V., 18 Oct 2019, In: Nanomaterials. 9, 10, 28 p., 1481.

    Research output: Contribution to journalReview articlepeer-review

Related by journal

  1. Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies

    Kim, E. J., Mofredj, K., Pickup, D., Chadwick, A., Irvine, J. T. S. & Armstrong, R., 1 Jan 2021, In: Journal of Power Sources. 481, 229010.

    Research output: Contribution to journalArticlepeer-review

  2. A novel electrode with multifunction and regeneration for highly efficient and stable symmetrical solid oxide cell

    Tian, Y., Liu, Y., Jia, L., Naden, A., Chen, J., Chi, B., Pu, J., Irvine, J. T. S. & Li, J., 1 Nov 2020, In: Journal of Power Sources. 475, 228620.

    Research output: Contribution to journalArticlepeer-review

  3. α-PbO2-type niobate as efficient cathode materials for steam and CO2 electrolysis

    Ruan, W., Yue, X., Ni, J., Xie, D. & Ni, C., 31 Jan 2021, In: Journal of Power Sources. 483, 229234.

    Research output: Contribution to journalArticlepeer-review

  4. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction

    Xu, H., Chen, B., Zhang, H., Tan, P., Yang, G., Irvine, J. T. S. & Ni, M., 1 Apr 2018, In: Journal of Power Sources. 382, p. 135-143 9 p.

    Research output: Contribution to journalArticlepeer-review

  5. Improved electrochemical performance of LiCoPO4 using eco-friendly aqueous binders

    Kim, E. J., Yue, X., Irvine, J. T. S. & Armstrong, A. R., 1 Nov 2018, In: Journal of Power Sources. 403, p. 11-19 9 p.

    Research output: Contribution to journalArticlepeer-review

ID: 252372365

Top