Skip to content

Research at St Andrews

Melting controls on the lutetium–hafnium evolution of Archaean crust

Research output: Contribution to journalArticlepeer-review

Author(s)

Nicholas J. Gardiner, Tim E. Johnson, Christopher L. Kirkland, R. Hugh Smithies

School/Research organisations

Abstract

The lutetium–hafnium (Lu–Hf) isotope record, typically measured in zircon crystals, provides a major tool for the study of crustal growth and differentiation. Interpretations of Hf isotope datasets use an evolution array defined by source 176Lu/177Hf. However, the very process that drives crustal differentiation to produce such arrays – partial melting – is precisely that which may modify the trajectory of the array due to variable degrees of anatexis allied with the differing compatibilities of Lu and Hf in residual minerals. Further, Lu/Hf estimates derived from the composition of present-day continental crust may be inappropriate for modelling Archaean crustal evolution, where different geodynamic styles and magmatic sources prevailed.


Using an approach combining phase equilibria, and trace element and isotopic modelling, we quantify the effects of partial melting of both a modern (N-MORB) and Archaean (C-F2) mafic source on melt Lu/Hf. Melting N-MORB shows that the 176Lu/177Hf of the melt, which modelling predicts to be between 0.015 and 0.022, is sensitive to the degree of melting. This difference results in a variation of 4.5 epsilon units/billion years. By contrast, anatexis of C-F2 yields melts with 176Lu/177Hf ∼0.009 that are less affected by the degree of melting. Remelting TTG yields K-rich granitic melts (TTG + G) with 176Lu/177Hf ∼0.005. Thus, a partial melting event imposes a greater control on the resulting crustal reservoir Lu/Hf than the degree of melting. Archaean continental crust has a lower Lu/Hf than that of the average mid to upper continental crust, and therefore a lower 176Lu/177Hf (here 0.005–0.009) is appropriate to modelling its Hf isotopic evolution. There has been a secular change in average crustal Lu/Hf, with the median Lu/Hf of Proterozoic and Phanerozoic magmatic rocks being higher than that of Archaean TTG + G. We show that an enriched Archaean mafic source (C-F2) with a Lu/Hf ratio of ∼0.12 may produce TTG continental crust with a 176Lu/177Hf approaching that calculated in real rocks worldwide.

Close

Details

Original languageEnglish
Pages (from-to)479-488
Number of pages10
JournalPrecambrian Research
Volume305
Early online date6 Dec 2017
DOIs
Publication statusPublished - Feb 2018

    Research areas

  • Archaean, Continental crust, Crustal evolution, Lu/Hf isotopes, Partial melting anatexis, TTG

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Stirred not shaken; critical evaluation of a proposed Archean meteorite impact in West Greenland

    Yakymchuk, C., Kirkland, C. L., Cavosie, A. J., Szilas, K., Hollis, J., Gardiner, N. J., Waterton, P., Steenfelt, A. & Martin, L., 1 Mar 2021, In: Earth and Planetary Science Letters. 557, 116730.

    Research output: Contribution to journalArticlepeer-review

  2. The phases of the Moon: Modelling crystallisation of the lunar magma ocean through equilibrium thermodynamics

    Johnson, T. E., Morrissey, L. J., Nemchin, A. A., Gardiner, N. J. & Snape, J. F., 15 Feb 2021, In: Earth and Planetary Science Letters. 556, 116721.

    Research output: Contribution to journalArticlepeer-review

  3. Theoretical versus empirical secular change in zircon composition

    Kirkland, C. L., Yakymchuk, C., Olierook, H. K. H., Hartnady, M. I. H., Gardiner, N. J., Moyen, J-F., Hugh Smithies, R., Szilas, K. & Johnson, T. E., 15 Jan 2021, In: Earth and Planetary Science Letters. 554, 12 p., 116660.

    Research output: Contribution to journalArticlepeer-review

  4. The Mesoarchaean Akia terrane, West Greenland, revisited: new insights based on spatial integration of geophysics, field observation, geochemistry and geochronology

    Steenfelt, A., Hollis, J., Kirkland, C. L., Sandrin, A., Gardiner, N. J., K. H. Olierook, H., Szilas, K., Waterton, P. & Yakymchuk, C., Jan 2021, In: Precambrian Research. In press, 105958.

    Research output: Contribution to journalArticlepeer-review

  5. Geodynamic implications of synchronous Norite and TTG formation in the 3 Ga Maniitsoq Norite Belt, West Greenland

    Waterton, P., Hyde, W., Tusch, J., Hollis, J., Kirkland, C., Kinney, C., Yakymchuk, C., Gardiner, N., Zakharov, D., Olierook, H., Münker, C., Lightfoot, P. & Szilas, K., 22 Sep 2020, In: Frontiers in Earth Science. 8, 30 p., 562062.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. The Mesoarchaean Akia terrane, West Greenland, revisited: new insights based on spatial integration of geophysics, field observation, geochemistry and geochronology

    Steenfelt, A., Hollis, J., Kirkland, C. L., Sandrin, A., Gardiner, N. J., K. H. Olierook, H., Szilas, K., Waterton, P. & Yakymchuk, C., Jan 2021, In: Precambrian Research. In press, 105958.

    Research output: Contribution to journalArticlepeer-review

  2. Using zircon in mafic migmatites to disentangle complex high-grade gneiss terrains – Terrane spotting in the Lewisian complex, NW Scotland

    Fischer, S., Prave, A., Johnson, T., Cawood, P. A., Hawkesworth, C., Horstwood, M. & EIMF, Apr 2021, In: Precambrian Research. 355, 106074.

    Research output: Contribution to journalArticlepeer-review

  3. A marine origin for the late Mesoproterozoic Copper Harbor and Nonesuch Formations of the Midcontinent Rift of Laurentia

    Jones, S. M., Prave, A. R., Raub, T. D., Cloutier, J., Stüeken, E. E., Rose, C. V., Linnekogel, S. & Nazarov, K., Jan 2020, In: Precambrian Research. 336, 105510.

    Research output: Contribution to journalArticlepeer-review

  4. Mesoarchean partial melting of mafic crust and tonalite production during high-T–low-P stagnant tectonism, Akia Terrane, West Greenland

    Yakymchuk, C., Kirkland, C. L., Hollis, J. A., Kendrick, J., Gardiner, N. J. & Szilas, K., Apr 2020, In: Precambrian Research. 339, 105615.

    Research output: Contribution to journalArticlepeer-review

  5. Oxygenated conditions in the aftermath of the Lomagundi-Jatuli Event: the carbon isotope and rare earth element signatures of the Paleoproterozoic Zaonega Formation, Russia

    Kreitsmann, T., Lepland, A., Bau, M., Prave, A., Paiste, K., Mänd, K., Sepp, H., Martma, T., Romashkin, A. E. & Kirsimäe, K., Sep 2020, In: Precambrian Research. 347, 16 p., 105855.

    Research output: Contribution to journalArticlepeer-review

ID: 261213567

Top