Skip to content

Research at St Andrews

Methane Oxidation at Redox Stable Fuel Cell Electrode La0.75Sr0.25Cr0.5Mn0.5O3-d

Research output: Contribution to journalArticlepeer-review

DOI

Author(s)

Shanwen Tao, John Thomas Sirr Irvine, S M Plint

School/Research organisations

Abstract

Because of its widespread availability, natural gas is the most important fuel for early application of stationary fuel cells, and furthermore, methane containing biogases are one of the most promising renewable energy alternatives; thus, it is very important to be able to efficiently utilize methane in fuel cells. Typically, external steam reforming is applied to allow methane utilization in high temperature fuel cells; however, direct oxidation will provide a much better solution. Recently, we reported good electrochemical performance for an oxide anode La0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) in low moisture (3% H2O) H-2 and CH4 fuels without significant coking in CH4. Here, we investigate the catalytic activity of this oxide with respect to its ability to utilize methane. This oxide is found to exhibit fairly low reforming activity for both H2O and CO2 reforming but is active for methane oxidation. LSCM is found to be a full oxidation catalyst rather than a partial oxidation catalyst as CO2 production dominates CO production even in CH4-rich CH4/O-2 mixtures. X-ray adsorption spectroscopy was utilized to confirm that Mn was the redox active species, clearly demonstrating that this material has the oxidation catalytic behavior that might be expected from a Mn perovskite and that the Cr ion is only present to ensure stability under fuel atmospheres.

Close

Details

Original languageEnglish
Pages (from-to)21771-21776
Number of pages6
JournalJournal of Physical Chemistry B
Volume110
Issue number43
DOIs
Publication statusPublished - 2 Nov 2006

    Research areas

  • CATALYTIC-PROPERTIES, PEROVSKITE, ANODE, HYDROCARBONS, COMBUSTION, OXIDES, MN, CO

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Enhancing electrochemical CO2 reduction using Ce(Mn,Fe)O2 with La(Sr)Cr(Mn)O3 cathode for high-temperature solid oxide electrolysis cells

    Lee, S., Kim, M., Lee, K. T., Irvine, J. T. S. & Shin, T. H., 12 May 2021, In: Advanced Energy Materials. Early View, 12 p., 2100339.

    Research output: Contribution to journalArticlepeer-review

  2. Durability of La0.20Sr0.25Ca0.45TiO3-based SOFC anodes: identifying sources of degradation in Ni and Pt/ceria co-impregnated fuel electrode microstructures

    Price, R., Weissen, U., Grolig, J. G., Cassidy, M., Mai, A. & Irvine, J. T. S., 8 Apr 2021, In: Journal of Materials Chemistry A. 15 p.

    Research output: Contribution to journalArticlepeer-review

  3. Achieving strong coherency for a composite electrode via one-pot method with enhanced electrochemical performance in reversible solid oxide cells

    Tian, Y., Wang, W., Liu, Y., Naden, A., Xu, M., Wu, S., Chi, B., Pu, J. & Irvine, J. T. S., 19 Mar 2021, In: ACS Catalysis. 11, 6, p. 3704-3714 11 p.

    Research output: Contribution to journalArticlepeer-review

  4. Alkaline modified A-site deficient perovskite catalyst surface with exsolved nanoparticles and functionality in biomass valorisation

    Umar, A., Neagu, D. & Irvine, J. T. S., 1 Mar 2021, In: Biofuel Research Journal. 8, 1, p. 1342-1350 9 p.

    Research output: Contribution to journalArticlepeer-review

  5. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

Related by journal

  1. Efficient singlet oxygen photogeneration by zinc porphyrin-dimers upon one- and two-photon excitation

    Mazur, L. M., Roland, T., Leroy-Lhez, S., Sol, V., Samoc, M., Samuel, I. D. W. & Matczyszyn, K., 16 May 2019, In: Journal of Physical Chemistry B. 123, 19, p. 4271-4277 7 p.

    Research output: Contribution to journalArticlepeer-review

  2. Laccase redox potentials: pH dependence and mutants, a QM/MM study

    Goetze, J. P. & Buehl, M., 8 Sep 2016, In: Journal of Physical Chemistry B. 120, 35, p. 9265-9276 12 p.

    Research output: Contribution to journalArticlepeer-review

  3. Photochemically induced dynamic nuclear polarization observed by solid-state NMR in a uniformly 13C-isotope labeled photosynthetic reaction center

    Paul, S., Bode, B. E., Matysik, J. & Alia, A., 29 Oct 2015, In: Journal of Physical Chemistry B. 119, 43, p. 13897-13903

    Research output: Contribution to journalArticlepeer-review

  4. Analysis of influenza A virus NS1 dimer interfaces in solution by pulse EPR distance measurements

    Kerry, P. S., Turkington, H. L., Ackermann, K., Jameison, S. A. & Bode, B. E., 22 Aug 2014, In: Journal of Physical Chemistry B. 118, 37, p. 10882-10888 7 p.

    Research output: Contribution to journalArticlepeer-review

ID: 365787

Top