Skip to content

Research at St Andrews

Mg in aragonitic bivalve shells: seasonal variations and mode of incorporation in Arctica islandica,

Research output: Contribution to journalArticle

Author(s)

L Foster, Adrian Anthony Finch, Nicola Allison, c Andersson, LJ Clarke

School/Research organisations

Abstract

The potential of Mg in Arctica islandica as a climate proxy is explored through analysis of live-collected shells from Irvine Bay, NW Scotland. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) analysis of the right hand valve from two specimens indicates that seasonal Mg/Ca variations do not correlate with seawater temperature. The highest Mg/Ca typically occurs at the annual growth checks in -November-February Mg/Ca variations between growth checks are significant in one specimen but usually not significant in the other. Mg/Ca measurements taken laterally across the band (i.e. perpendicular to direction of the growth) to determine heterogeneity of the aragonite deposited at the same time indicates that Mg/Ca concentration decreases with increasing distance from the periostracum in both shells. X-ray Absorption Near Edge Spectroscopy (XANES) indicates that Mg is not substituted into aragonite but is hosted by a disordered phase e.g. organic components or nanoparticles of an inorganic phase. Shell Mg/Ca variations may reflect changes in the concentration or composition of the disorded phase, as well as changes in the composition of the extrapallial fluid used for calcification. Such changes could reflect the relative transportation rates of Mg and Ca to the calcification site. (C) 2008 Elsevier B.V. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)113-119
Number of pages7
JournalChemical Geology
Volume254
DOIs
Publication statusPublished - 30 Aug 2008

    Research areas

  • Arctica islandica, Mg/Ca, Climate reconstruction, Synchrotron, XANES, AMORPHOUS CALCIUM-CARBONATE, MOLLUSK SHELL, MG/CA

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. The effect of ocean acidification on tropical coral calcification: insights from calcification fluid DIC chemistry

    Allison, N., Cole, C., Hintz, C., Hintz, K., Rae, J. & Finch, A., 10 Oct 2018, In : Chemical Geology. 497, p. 162-169 8 p.

    Research output: Contribution to journalArticle

  2. Corals concentrate dissolved inorganic carbon to facilitate calcification

    Allison, N., Cohen, I., Finch, A. A., Erez, J. & Tudhope, A. W., 22 Dec 2014, In : Nature Communications. 5, 5741.

    Research output: Contribution to journalArticle

Related by journal

  1. Hydrothermal dedolomitisation of carbonate rocks of the Paleoproterozoic Zaonega Formation, NW Russia — Implications for the preservation of primary C isotope signals

    Kreitsmann, T., Külaviir, M., Lepland, A., Paiste, K., Paiste, P., Prave, A. R., Sepp, H., Romashkin, A. E., Rychanchik, D. V. & Kirsimäe, K., 3 Mar 2019, In : Chemical Geology. 512, p. 43-57 15 p.

    Research output: Contribution to journalArticle

  2. Bias in carbon concentration and δ13C measurements of organic matter due to cleaning treatments with organic solvents

    Muller, É., Thomazo, C., Stüeken, E. E., Hallmann, C., Leider, A., Chaduteau, C., Buick, R., Baton, F., Philippot, P. & Ader, M., 20 Aug 2018, In : Chemical Geology. 493, p. 405-412 8 p.

    Research output: Contribution to journalArticle

  3. Carbonated mantle domains at the base of the Earth's transition zone

    Sun, W., Hawkesworth, C. J., Yao, C., Zhang, C., Huang, R., Liu, X., Sun, X., Ireland, T., Song, M., Ling, M., Ding, X., Zhang, Z., Fan, W. & Wu, Z., 5 Feb 2018, In : Chemical Geology. 478, p. 69-75

    Research output: Contribution to journalArticle

  4. Multiple sulphur isotope records tracking basinal and global processes in the 1.98 Ga Zaonega Formation, NW Russia

    Paiste, K., Lepland, A., Zerkle, A. L., Kirsimäe, K., Izon, G. J., Patel, N., McLean, F., Kreitsmann, T., Mänd, K., Bui, T., Romashkin, A., Rychanchik, D. & Prave, A. R., 5 Nov 2018, In : Chemical Geology. 499, p. 151-164 14 p.

    Research output: Contribution to journalArticle

  5. Quantification of paleo-aquifer changes using clumped isotopes in subaqueous carbonate speleothems

    Gázquez, F., Columbu, A., De Waele, J., Breitenbach, S. F. M., Huang, C. R., Shen, C. C., Lu, Y., Calaforra, J. M., Mleneck-Vautravers, M. J. & Hodell, D. A., 20 Aug 2018, In : Chemical Geology. 493, p. 246-257 12 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Highlights of the Goldschmidt Meeting, Heidelberg, 31 March–4 April 1996 in honor of A.W. Hofmann

    Hawkesworth, C. (ed.) & Arndt, N. (ed.), 1997, Chemical Geology, 139 360 p.

    Research output: Contribution to specialist publicationSpecial issue

ID: 453510