Skip to content

Research at St Andrews

Microstructural studies and performance of impregnated manganese containing perovskite solid oxide fuel cell anodes

Research output: Chapter in Book/Report/Conference proceedingConference contribution

DOI

Author(s)

G. Corre, G. Kim, M. Cassidy, R. J. Gorte, J. M. Vohs, J. T S Irvine

School/Research organisations

Abstract

We report here on the development of a novel type of solid oxide fuel cell anodes that are based on Mn containing perovskites and prepared by infiltration of electrode precursor solutions into yttria stabilized zirconia scaffolds. The presence of Mn, even in small amount, on the B-site of the ABO3 structure leads to electrode microstructures that offer a large surface area that is available for electrochemical reactions. The oxides form a remarkable thin coating on the electrode scaffold after high temperature sintering. The evolution of those films in reducing environments creates arrays of interconnected ̃10nm scale particles covering the electrode scaffold. Such electrodes, based on LSCM with small amounts of added catalyst, provide outstanding performance, both for the direct oxidation of methane in solid oxide fuel cells, and the reduction of pure CO2 in solid oxide electrolyzers.

Close

Details

Original languageEnglish
Title of host publicationECS Transactions - Solid Oxide Fuel Cells 11 (SOFC-XI)
Pages2201-2211
Number of pages11
Volume25
Edition2 PART 3
DOIs
Publication statusPublished - 1 Dec 2009
Event11th International Symposium on Solid Oxide Fuel Cells (SOFC-XI)- 216th ECS Meeting - Vienna, Austria
Duration: 4 Oct 20099 Oct 2009

Conference

Conference11th International Symposium on Solid Oxide Fuel Cells (SOFC-XI)- 216th ECS Meeting
CountryAustria
CityVienna
Period4/10/099/10/09

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Apr 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  2. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 14 Aug 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

  3. B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D-T., Irvine, J., Duan, S. & Ni, J-P., 29 Oct 2019, In : Journal of Materials Chemistry. In press

    Research output: Contribution to journalArticle

  4. Nanostructured perovskite solar cells

    McDonald, C., Ni, C., Maguire, P., Connor, P., Irvine, J. T. S., Mariotti, D. & Svrcek, V., 18 Oct 2019, In : Nanomaterials. 9, 10, 28 p., 1481.

    Research output: Contribution to journalArticle

  5. Enhanced cycling performance of magnesium doped lithium cobalt phosphate

    Kim, E. J., Miller, D., Irvine, J. T. S. & Armstrong, A. R., 26 Sep 2019, In : ChemElectroChem. 6, 18

    Research output: Contribution to journalArticle

ID: 255836014

Top