Skip to content

Research at St Andrews

Mixing regime simulation and cellulose particle tracing in a Stacked Frame Photocatalytic Reactor

Research output: Contribution to journalArticle

Author(s)

Sanjay Nagarajan, Lorenzo Stella, Linda A. Lawton, John T. S. Irvine, Peter K. J. Robertson

School/Research organisations

Abstract

To sustainably meet the global energy demand, unconventional methods to produce renewable energy must emerge. Biofuels from cellulose (via fermentable sugar production) mediated via photocatalysis provides an alternative to conventional fossil fuels. In order to effectively drive photocatalytic processes an effective reactor design is required, the design of which is influenced by a number of key factors such as the catalyst to reactant ratio and residence time, catalyst illumination time, light penetration and distribution for the system, mass transfer limitations (mixing) and product recovery. In this study we use COMSOL Multiphysics® to simulate and assess one of the mentioned parameters – mixing regime of cellulose particles in a Stacked Frame Photocatalysis Reactor (SFPR). In the reactor design, we compare two mixers: a ‘plus’ shaped magnetic stirrer bar and an 8 blade Rushton impeller. The simulations reveal that the Rushton impeller offers a radial mixing pattern with a higher fluid velocity of 1.2 m/s when compared to the stirrer bar that offers a fluid velocity of 0.9 m/s. Cellulose particle tracing simulations confirm that the particle dispersion is superior in the case of the Rushton impeller as the vorticity generated during the mixing push the particles to the reactor’s walls. Since the particles are forced towards the walls, there is a probability of more particles being illuminated than in the case of no or improper mixing.
Close

Details

Original languageEnglish
Pages (from-to)301-308
Number of pages8
JournalChemical Engineering Journal
Volume313
Early online date7 Dec 2016
DOIs
Publication statusPublished - 1 Apr 2017

    Research areas

  • Photocatalysis, COMSOL, Fermentable Sugars, Mixing, Simulation

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Apr 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  2. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 14 Aug 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

  3. B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D-T., Irvine, J., Duan, S. & Ni, J-P., 29 Oct 2019, In : Journal of Materials Chemistry. In press

    Research output: Contribution to journalArticle

  4. Nanostructured perovskite solar cells

    McDonald, C., Ni, C., Maguire, P., Connor, P., Irvine, J. T. S., Mariotti, D. & Svrcek, V., 18 Oct 2019, In : Nanomaterials. 9, 10, 28 p., 1481.

    Research output: Contribution to journalArticle

  5. Enhanced cycling performance of magnesium doped lithium cobalt phosphate

    Kim, E. J., Miller, D., Irvine, J. T. S. & Armstrong, A. R., 26 Sep 2019, In : ChemElectroChem. 6, 18

    Research output: Contribution to journalArticle

Related by journal

  1. Boosting photocatalytic oxidation on graphitic carbon nitride for efficient photocatalysis by heterojunction with graphitic carbon units

    Abdellatif, H. R. S., Zhang, G., Wang, X., Xie, D., Irvine, J. T. S., Ni, J. & Ni, C., 29 Mar 2019, In : Chemical Engineering Journal. 370, p. 875-884 10 p.

    Research output: Contribution to journalArticle

  2. The application of a novel fluidised photo reactor under UV-Visible and natural solar irradiation in the photocatalytic generation of hydrogen

    Skillen, N., Adams, M., McCullagh, C., Ryu, S. Y., Fina, F., Hoffman, M. R., Irvine, J. T. S. & Robertson, P. K. J., 15 Feb 2016, In : Chemical Engineering Journal. 286, p. 610-621 12 p.

    Research output: Contribution to journalArticle

  3. Palladium-N-heterocyclic carbene (NHC) catalyzed C–N bond formation in a continuous flow microreactor. Effect of process parameters and comparison with batch operation

    Pommella, A., Tomaiuolo, G., Chartoire, A. R. G., Caserta, S., Toscana, G., Nolan, S. P. & Guido, S., 2013, In : Chemical Engineering Journal. 223, p. 578-583 6 p.

    Research output: Contribution to journalArticle

ID: 248156124

Top