Skip to content

Research at St Andrews

Modeling tissue and blood gas kinetics in coastal and offshore common bottlenose dolphins, Tursiops truncatus

Research output: Contribution to journalArticlepeer-review

Abstract

Bottlenose dolphins (Tursiops truncatus) are highly versatile breath-holding predators that have adapted to a wide range of foraging niches from rivers and coastal ecosystems to deep-water oceanic habitats. Considerable research has been done to understand how bottlenose dolphins manage O2 during diving, but little information exists on other gases or how pressure affects gas exchange. Here we used a dynamic multi-compartment gas exchange model to estimate blood and tissue O2, CO2, and N2 from high-resolution dive records of two different common bottlenose dolphin ecotypes inhabiting shallow (Sarasota Bay) and deep (Bermuda) habitats. The objective was to compare potential physiological strategies used by the two populations to manage shallow and deep diving life styles. We informed the model using species-specific parameters for blood hematocrit, resting metabolic rate, and lung compliance. The model suggested that the known O2 stores were sufficient for Sarasota Bay dolphins to remain within the calculated aerobic dive limit (cADL), but insufficient for Bermuda dolphins that regularly exceeded their cADL. By adjusting the model to reflect the body composition of deep diving Bermuda dolphins, with elevated muscle mass, muscle myoglobin concentration and blood volume, the cADL increased beyond the longest dive duration, thus reflecting the necessary physiological and morphological changes to maintain their deep-diving life-style. The results indicate that cardiac output had to remain elevated during surface intervals for both ecotypes, and suggests that cardiac output has to remain elevated during shallow dives in-between deep dives to allow sufficient restoration of O2 stores for Bermuda dolphins. Our integrated modeling approach contradicts predictions from simple models, emphasizing the complex nature of physiological interactions between circulation, lung compression, and gas exchange.
Close

Details

Original languageEnglish
Article number838
Number of pages13
JournalFrontiers in Physiology
Volume9
DOIs
Publication statusPublished - 17 Jul 2018

    Research areas

  • Diving physiology, Modeling and simulations, Gas exchange, Marine mammals, Decompression sickness, Blood gases, Hypoxia

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Effects of 3 Tesla magnetic resonance imaging exposure on the behavior and orientation of homing pigeons Columba livia domestica

    Párraga, D. G., Tyack, P. L., Marco-Cabedo, V., Crespo-Picazo, J. L., Manteca, X. & Martí-Bonmatí, L., 18 Dec 2020, In: PLoS ONE. 15, 12, 9 p., e0241280.

    Research output: Contribution to journalArticlepeer-review

  2. On the use of the Lloyd's Mirror effect to infer the depth of vocalizing fin whales

    Pereira, A., Harris, D., Tyack, P. & Matias, L., 1 Nov 2020, In: Journal of the Acoustical Society of America. 148, 5, p. 3086-3101 16 p.

    Research output: Contribution to journalArticlepeer-review

  3. Short-term responses of sperm whales Physeter macrocephalus to the attachment of suction cup tags

    Warren, V. E., Miller, P. J. O. & Tyack, P. L., 9 Jul 2020, In: Marine Ecology Progress Series. 645, p. 219-234 16 p.

    Research output: Contribution to journalArticlepeer-review

  4. Flash and grab: deep-diving southern elephant seals trigger anti-predator flashes in bioluminescent prey

    Goulet, P., Guinet, C., Campagna, C., Campagna, J., Tyack, P. L. & Johnson, M., 19 May 2020, In: Journal of Experimental Biology. 223, 10, 11 p., jeb.222810.

    Research output: Contribution to journalArticlepeer-review

  5. Fin whale acoustic presence and song characteristics in seas to the southwest of Portugal

    Pereira, A., Harris, D., Tyack, P. & Matias, L., Apr 2020, In: Journal of the Acoustical Society of America. 147, 4, p. 2235-2249 15 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Frontiers in Physiology (Journal)

    Tom Kelsey (Member of editorial board)

    Feb 2018Jan 2022

    Activity: Publication peer-review and editorial work typesEditor of research journal

  2. Frontiers in Physiology (Journal)

    Ailsa Jane Hall (Member of editorial board)

    20132020

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Conditioned variation in heart rate during static breath-holds in the bottlenose dolphin (Tursiops truncatus)

    Fahlman, A., Cozzi, B., Manley, M., Jabas, S., Malik, M., Blawas, A. & Janik, V. M., 24 Nov 2020, In: Frontiers in Physiology. 11, 604018.

    Research output: Contribution to journalArticlepeer-review

  2. A pilot study investigating the influence of glucagon-like peptide-1 receptor single nucleotide polymorphisms on gastric emptying rate in Caucasian Men

    Yau, A. M. W., McLaughlin, J., Maughan, R. J., Gilmore, W., Ashworth, J. J. & Evans, G. H., 25 Sep 2018, In: Frontiers in Physiology. 9, 1331.

    Research output: Contribution to journalArticlepeer-review

  3. Breathing patterns indicate cost of exercise during diving and response to experimental sound exposures in long-finned pilot whales

    Isojunno, S., Aoki, K., Curé, C., Kvadsheim, P. & Miller, P., 25 Oct 2018, In: Frontiers in Physiology. 9, 17 p., 1462.

    Research output: Contribution to journalArticlepeer-review

  4. Duplication of a single myhz1.1 gene facilitated the ability of goldfish (Carassius auratus) to alter fast muscle contractile properties with seasonal temperature change

    Garcia de la Serrana, D., Wreggelsworth, K. & Johnston, I. A., 4 Dec 2018, In: Frontiers in Physiology. 9, 10 p., 1724.

    Research output: Contribution to journalArticlepeer-review

ID: 253410076

Top