Skip to content

Research at St Andrews

Modelling the broadband propagation of marine mammal echolocation clicks for click-based population density estimates

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Abstract

Passive acoustic monitoring with widely-dispersed hydrophones has been suggested as a cost-effective method to monitor population densities of echolocating marine mammals. This requires an estimate of the area around each receiver over which vocalizations are detected—the “effective detection area” (EDA). In the absence of auxiliary measurements enabling estimation of the EDA, it can be modelled instead. Common simplifying model assumptions include approximating the spectrum of clicks by flat energy spectra, and neglecting the frequency-dependence of sound absorption within the click bandwidth (narrowband assumption), rendering the problem amenable to solution using the sonar equation. Here, it is investigated how these approximations affect the estimated EDA and their potential for biasing the estimated density. EDA was estimated using the passive sonar equation, and by applying detectors to simulated clicks injected into measurements of background noise. By comparing model predictions made using these two approaches for different spectral energy distributions of echolocation clicks, but identical click source energy level and detector settings, EDA differed by up to a factor of 2 for Blainville's beaked whales. Both methods predicted relative density bias due to narrowband assumptions ranged from 5% to more than 100%, depending on the species, detector settings, and noise conditions.
Close

Details

Original languageEnglish
Pages (from-to)954-967
JournalJournal of the Acoustical Society of America
Volume143
Issue number2
Early online date14 Feb 2018
DOIs
Publication statusPublished - Feb 2018

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Understanding the population consequences of disturbance

    Pirotta, E., Booth, C. G., Costa, D. P., Fleishman, E., Kraus, S. D., Lusseau, D., Moretti, D., New, L. F., Schick, R. S., Schwarz, L. K., Simmons, S. E., Thomas, L., Tyack, P. L., Weise, M. J., Wells, R. S. & Harwood, J., 12 Sep 2018, In : Ecology and Evolution. Early View, 13 p.

    Research output: Contribution to journalReview article

  2. Marine mammals and sonar: dose-response studies, the risk-disturbance hypothesis and the role of exposure context

    Harris, C. M., Thomas, L., Falcone, E., Hildebrand, J., Houser, D., Kvadsheim, P., Lam, F-P. A., Miller, P., Moretti, D. J., Read, A., Slabbekoorn, H., Southall, B. L., Tyack, P. L., Wartzok, D. & Janik, V. M., Jan 2018, In : Journal of Applied Ecology. 55, 1, p. 396-404

    Research output: Contribution to journalReview article

  3. Approaches to Understanding the Cumulative Effects of Stressors on Marine Mammals

    Tyack, P. L., Bailey, H., Crocker, D., Estes, J. E., Francis, C. D., Harwood, J., Schwacke, L., Thomas, L. J. & Wartzok, D., 2017, Washington DC: National Academies Press. 146 p.

    Research output: Book/ReportCommissioned report

Related by journal

  1. Fin whale density and distribution estimation using acoustic bearings derived from sparse arrays

    Harris, D. V., Miksis-Olds, J. L., Vernon, J. A. & Thomas, L., May 2018, In : Journal of the Acoustical Society of America. 143, 5, p. 2980-2993 14 p.

    Research output: Contribution to journalArticle

  2. Two unit analysis of Sri Lankan pygmy blue whale song over a decade

    Miksis-Olds, J. L., Nieukirk, S. L. & Harris, D. V., 31 Dec 2018, In : Journal of the Acoustical Society of America. 144, 6, p. 3618-3626 9 p.

    Research output: Contribution to journalArticle

  3. Ultrasonic waves in uniaxially stressed multilayered and 1-D phononic structures: guided and Floquet wave analysis

    Demčenko, A., Wilson, R., Cooper, J., Mazilu, M. & Volker, A., 5 Jul 2018, In : Journal of the Acoustical Society of America. 144, 1, p. 81-91 12 p.

    Research output: Contribution to journalArticle

ID: 252173117