Skip to content

Research at St Andrews

Molybdenum isotope fractionation by cyanobacterial assimilation during nitrate utilization and N2 fixation

Research output: Research - peer-reviewArticle

DOI

Author(s)

Aubrey Lea Zerkle, K. Scheiderich, J. A. Maresca, L. J. Liermann, S. L. Brantley

School/Research organisations

Abstract

We measured the delta 98Mo of cells and media from molybdenum (Mo) assimilation experiments with the freshwater cyanobacterium Anabaena variabilis, grown with nitrate as a nitrogen (N) source or fixing atmospheric N-2. This organism uses a Mo-based nitrate reductase during nitrate utilization and a Mo-based dinitrogenase during N-2 fixation under culture conditions here. We also demonstrate that it has a high-affinity Mo uptake system (ModABC) similar to other cyanobacteria, including marine N-2-fixing strains. Anabaena variabilis preferentially assimilated light isotopes of Mo in all experiments, resulting in fractionations of -0.2 parts per thousand to -1.0 parts per thousand +/- 0.2 parts per thousand between cells and media (epsilon(cells-media)), extending the range of biological Mo fractionations previously reported. The fractionations were internally consistent within experiments, but varied with the N source utilized and for different growth phases sampled. During growth on nitrate, A. variabilis consistently produced fractionations of -0.3 +/- 0.1 parts per thousand (mean +/- standard deviation between experiments). When fixing N-2, A. variabilis produced fractionations of -0.9 +/- 0.1 parts per thousand during exponential growth, and -0.5 +/- 0.1 parts per thousand during stationary phase. This pattern is inconsistent with a simple kinetic isotope effect associated with Mo transport, because Mo is likely transported through the ModABC uptake system under all conditions studied. We present a reaction network model for Mo isotope fractionation that demonstrates how Mo transport and storage, coordination changes during enzymatic incorporation, and the distribution of Mo inside the cell could all contribute to the total biological fractionations. Additionally, we discuss the potential importance of biologically incorporated Mo to organic matter-bound Mo in marine sediments.

Close

Details

Original languageEnglish
Pages (from-to)94-106
Number of pages13
JournalGeobiology
Volume9
Issue number1
DOIs
StatePublished - Jan 2011

    Research areas

  • OCEANIC ANOXIC EVENTS, NITROGEN-FIXATION, DIAZOTROPHIC CYANOBACTERIA, MC-ICP-MS, MARINE-SEDIMENTS, AZOTOBACTER-VINELANDII, STORAGE PROTEIN, ANABAENA-VARIABILIS ATCC-29413, BINDING-PROTEIN MOP, DISSIMILATORY SULFATE REDUCTION

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. High-frequency fluctuations in redox conditions during the latest Permian mass extinction

    Mettam, C., Zerkle, A. L., Claire, M. W., Izon, G., Junium, C. J. & Twitchett, R. J. 1 Nov 2017 In : Palaeogeography, Palaeoclimatology, Palaeoecology. 485, p. 210-223

    Research output: Research - peer-reviewArticle

  2. Sulphur cycling in a Neoarchean microbial mat

    Meyer, N. R., Zerkle, A. L. & Fike, D. A. May 2017 In : Geobiology. 15, 13, p. 353-365 13 p.

    Research output: Research - peer-reviewArticle

  3. The geobiological nitrogen cycle: from microbes to the mantle

    Zerkle, A. L. & Mikhail, S. May 2017 In : Geobiology. 15, 13, p. 343-352 10 p.

    Research output: Research - peer-reviewArticle

  4. Biological regulation of atmospheric chemistry en route to planetary oxygenation

    Izon, G., Zerkle, A. L., Williford, K., Farquhar, J., Poulton, S. & Claire, M. W. 28 Mar 2017 In : Proceedings of the National Academy of Sciences of the United States of America. 114, 13, p. 2571-2579

    Research output: Research - peer-reviewArticle

  5. Onset of the aerobic nitrogen cycle during the Great Oxidation Event

    Zerkle, A. L., Poulton, S. W., Newton, R. J., Mettam, C., Claire, M. W., Bekker, A. & Junium, C. K. 23 Feb 2017 In : Nature. 542, p. 465-467 10 p.

    Research output: Research - peer-reviewLetter

Related by journal

  1. Environmental niches and metabolic diversity in Neoarchean lakes

    Stueeken, E. E., Buick, R., Anderson, R. E., Baross, J. A., Planavsky, N. J. & Lyons, T. W. 30 Aug 2017 In : Geobiology. Early View

    Research output: Research - peer-reviewArticle

  2. Sulphur cycling in a Neoarchean microbial mat

    Meyer, N. R., Zerkle, A. L. & Fike, D. A. May 2017 In : Geobiology. 15, 13, p. 353-365 13 p.

    Research output: Research - peer-reviewArticle

  3. The geobiological nitrogen cycle: from microbes to the mantle

    Zerkle, A. L. & Mikhail, S. May 2017 In : Geobiology. 15, 13, p. 343-352 10 p.

    Research output: Research - peer-reviewArticle

  4. Did life originate from a global chemical reactor?

    Stüeken, E. E., Anderson, R. E., Bowman, J. S., Brazelton, W. J., Colangelo-lillis, J., Goldman, A. D., Som, S. M. & Baross, J. A. 1 Mar 2013 In : Geobiology. 11, 2, p. 101-126

    Research output: Research - peer-reviewArticle

ID: 51056618