Skip to content

Research at St Andrews

Monitoring contractility in cardiac tissue with cellular resolution using biointegrated microlasers

Research output: Contribution to journalArticlepeer-review

Author(s)

Marcel Schubert, Lewis Woolfson, Isla Rose Mary Barnard, Amy Dorward, Becky Casement , Andrew Morton, Gavin Bruce Robertson, Paul L. Appleton, Gareth Brian Miles, Carl S Tucker, Samantha J. Pitt, Malte Christian Gather

School/Research organisations

Abstract

The contractility of cardiac cells is a key parameter that describes the biomechanical characteristics of the beating heart, but functional monitoring of three-dimensional cardiac tissue with single-cell resolution remains a major challenge. Here, we introduce microscopic whispering-gallery-mode lasers into cardiac cells to realize all-optical recording of transient cardiac contraction profiles with cellular resolution. The brilliant emission and high spectral sensitivity of microlasers to local changes in refractive index enable long-term tracking of individual cardiac cells, monitoring of drug administration, accurate measurements of organ-scale contractility in live zebrafish, and robust contractility sensing through hundreds of micrometres of rat heart tissue. Our study reveals changes in sarcomeric protein density as an underlying factor to cardiac contraction. More broadly, the use of novel micro- and nanoscopic lasers as non-invasive, biointegrated optical sensors brings new opportunities to monitor a wide range of physiological parameters with cellular resolution.
Close

Details

Original languageEnglish
Pages (from-to)452–458
Number of pages12
JournalNature Photonics
Volume14
Issue number7
Early online date15 Jun 2020
DOIs
Publication statusPublished - Jul 2020

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Microlaser-based contractility sensing in single cardiomyocytes and whole hearts

    Schubert, M., Woolfson, L., Barnard, I. R. M., Morton, A., Casement, B., Robertson, G. B., Miles, G. B., Pitt, S. J., Tucker, C. S. & Gather, M. C., 22 Jul 2019, Novel biophotonics techniques and applications V. Amelink, A. & Nadkarni, S. K. (eds.). SPIE, 3 p. 110750C. (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; vol. 11075).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  2. Microlaser-based contractility sensing in single cardiomyocytes and whole hearts

    Schubert, M., Woolfson, L., Barnard, I. R. M., Morton, A., Casement, B., Robertson, G. B., Miles, G. B., Pitt, S. J., Tucker, C. S. & Gather, M. C., 8 Apr 2019, Novel Techniques in Microscopy - Proceedings Biophotonics Congress: Optics in the Life Sciences Congress 2019 (BODA, BRAIN, NTM, OMA, OMP). Optical Society of American (OSA), NM4C.2. (Novel Techniques in Microscopy - Proceedings Biophotonics Congress: Optics in the Life Sciences Congress 2019 (BODA, BRAIN, NTM, OMA, OMP)).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  3. Lasing in live mitotic and non-phagocytic cells by efficient delivery of microresonators

    Schubert, M., Volckaert, K., Karl, M., Morton, A., Liehm, P., Miles, G. B., Powis, S. J. & Gather, M. C., 19 Jan 2017, In: Scientific Reports. 7, 40877.

    Research output: Contribution to journalArticlepeer-review

  4. Photostimulation for in vitro optogenetics with high power blue organic light-emitting diodes

    Morton, A., Murawski, C., Deng, Y., Keum, C., Miles, G. B., Tello, J. A. & Gather, M. C., 18 Mar 2019, In: Advanced Biosystems. 3, 3, 8 p., 1800290.

    Research output: Contribution to journalArticlepeer-review

  5. Distributed feedback lasers based on green fluorescent protein and conformal high refractive index oxide layers

    Karl, M., Meek, A. T., Murawski, C., Tropf, L. C., Keum, C., Schubert, M., Samuel, I. D. W., Turnbull, G. A. & Gather, M. C., Jun 2020, In: Laser & Photonics Reviews. 14, 6, 7 p., 2000101.

    Research output: Contribution to journalReview articlepeer-review

Related by journal

  1. Enhanced energy storage in chaotic optical resonators

    Liu, C., Di Falco, A., Molinari, D., Khan, Y., Ooi, B. S., Krauss, T. F. & Fratalocchi, A., 2013, Nature Photonics, 7, 6, p. 473-478 6 p.

    Research output: Contribution to specialist publicationArticle

Related by journal

  1. Molecular designs offer fast exciton conversion

    Zysman-Colman, E., 23 Sep 2020, In: Nature Photonics. 14, p. 593-594 2 p.

    Research output: Contribution to journalLetterpeer-review

  2. Optical hooks

    Dholakia, K. & Bruce, G. D., 22 Mar 2019, In: Nature Photonics. 13, p. 229-230 2 p.

    Research output: Contribution to journalComment/debate

  3. Towards optimal single-photon sources from polarized microcavities

    Wang, H., He, Y-M., Chung, T-H., Hu, H., Yu, Y., Chen, S., Ding, X., Chen, M-C., Qin, J., Yang, X., Liu, R-Z., Duan, Z-C., Li, J-P., Gerhardt, S., Winkler, K., Jurkat, J., Wang, L-J., Gregersen, N., Huo, Y-H., Dai, Q. & 4 others, Yu, S., Höfling, S., Lu, C-Y. & Pan, J-W., 5 Aug 2019, In: Nature Photonics. 6 p.

    Research output: Contribution to journalArticlepeer-review

  4. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material

    Alam, M. Z., Schulz, S. A., Upham, J., De Leon, I. & Boyd, R. W., Feb 2018, In: Nature Photonics. 12, 2, p. 79-83 6 p.

    Research output: Contribution to journalArticlepeer-review

ID: 266697637

Top