Skip to content

Research at St Andrews

Morphology control of epitaxial monolayer transition metal dichalcogenides

Research output: Contribution to journalArticlepeer-review

Standard

Morphology control of epitaxial monolayer transition metal dichalcogenides. / Rajan, Akhil ; Underwood, Kaycee; Mazzola, Federico; King, Phil.

In: Physical Review Materials, Vol. 4, No. 1, 014003, 01.2020.

Research output: Contribution to journalArticlepeer-review

Harvard

Rajan, A, Underwood, K, Mazzola, F & King, P 2020, 'Morphology control of epitaxial monolayer transition metal dichalcogenides', Physical Review Materials, vol. 4, no. 1, 014003. https://doi.org/10.1103/PhysRevMaterials.4.014003

APA

Rajan, A., Underwood, K., Mazzola, F., & King, P. (2020). Morphology control of epitaxial monolayer transition metal dichalcogenides. Physical Review Materials, 4(1), [014003]. https://doi.org/10.1103/PhysRevMaterials.4.014003

Vancouver

Rajan A, Underwood K, Mazzola F, King P. Morphology control of epitaxial monolayer transition metal dichalcogenides. Physical Review Materials. 2020 Jan;4(1). 014003. https://doi.org/10.1103/PhysRevMaterials.4.014003

Author

Rajan, Akhil ; Underwood, Kaycee ; Mazzola, Federico ; King, Phil. / Morphology control of epitaxial monolayer transition metal dichalcogenides. In: Physical Review Materials. 2020 ; Vol. 4, No. 1.

Bibtex - Download

@article{c9c0e108bf444d21ab5c206c7977f088,
title = "Morphology control of epitaxial monolayer transition metal dichalcogenides",
abstract = "To advance fundamental understanding and ultimate application of transition-metal dichalcogenide (TMD) monolayers, it is essential to develop capabilities for the synthesis of high-quality single-layer samples. Molecular beam epitaxy (MBE), a leading technique for the fabrication of the highest-quality epitaxial films of conventional semiconductors has, however, typically yielded only small grain sizes and suboptimal morphologies when applied to the van der Waals growth of monolayer TMDs. Here, we present a systematic study on the influence of adatom mobility, growth rate, and metal:chalcogen flux on the growth of NbSe2, VSe2, and TiSe2 using MBE. Through this, we identify the key drivers and influence of the adatom kinetics that control the epitaxial growth of TMDs, realizing four distinct morphologies of the as-grown compounds. We use this to determine optimized growth conditions for the fabrication of high-quality monolayers, ultimately realizing the largest grain sizes of monolayer TMDs that have been achieved to date via MBE growth.",
author = "Akhil Rajan and Kaycee Underwood and Federico Mazzola and Phil King",
note = "Funding: AFM system (funded via an EPSRC equipment grant: EP/L017008/1) used in this work and experimental support. The Leverhulme Trust (Grant no. RL-2016-006); The Royal Society; the European Research Council (Grant No. ERC-714193-QUESTDO). K.U. acknowledges EPSRC for PhD studentship support through grant no. EP/L015110/1.",
year = "2020",
month = jan,
doi = "10.1103/PhysRevMaterials.4.014003",
language = "English",
volume = "4",
journal = "Physical Review Materials",
issn = "2475-9953",
publisher = "AMER PHYSICAL SOC",
number = "1",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Morphology control of epitaxial monolayer transition metal dichalcogenides

AU - Rajan, Akhil

AU - Underwood, Kaycee

AU - Mazzola, Federico

AU - King, Phil

N1 - Funding: AFM system (funded via an EPSRC equipment grant: EP/L017008/1) used in this work and experimental support. The Leverhulme Trust (Grant no. RL-2016-006); The Royal Society; the European Research Council (Grant No. ERC-714193-QUESTDO). K.U. acknowledges EPSRC for PhD studentship support through grant no. EP/L015110/1.

PY - 2020/1

Y1 - 2020/1

N2 - To advance fundamental understanding and ultimate application of transition-metal dichalcogenide (TMD) monolayers, it is essential to develop capabilities for the synthesis of high-quality single-layer samples. Molecular beam epitaxy (MBE), a leading technique for the fabrication of the highest-quality epitaxial films of conventional semiconductors has, however, typically yielded only small grain sizes and suboptimal morphologies when applied to the van der Waals growth of monolayer TMDs. Here, we present a systematic study on the influence of adatom mobility, growth rate, and metal:chalcogen flux on the growth of NbSe2, VSe2, and TiSe2 using MBE. Through this, we identify the key drivers and influence of the adatom kinetics that control the epitaxial growth of TMDs, realizing four distinct morphologies of the as-grown compounds. We use this to determine optimized growth conditions for the fabrication of high-quality monolayers, ultimately realizing the largest grain sizes of monolayer TMDs that have been achieved to date via MBE growth.

AB - To advance fundamental understanding and ultimate application of transition-metal dichalcogenide (TMD) monolayers, it is essential to develop capabilities for the synthesis of high-quality single-layer samples. Molecular beam epitaxy (MBE), a leading technique for the fabrication of the highest-quality epitaxial films of conventional semiconductors has, however, typically yielded only small grain sizes and suboptimal morphologies when applied to the van der Waals growth of monolayer TMDs. Here, we present a systematic study on the influence of adatom mobility, growth rate, and metal:chalcogen flux on the growth of NbSe2, VSe2, and TiSe2 using MBE. Through this, we identify the key drivers and influence of the adatom kinetics that control the epitaxial growth of TMDs, realizing four distinct morphologies of the as-grown compounds. We use this to determine optimized growth conditions for the fabrication of high-quality monolayers, ultimately realizing the largest grain sizes of monolayer TMDs that have been achieved to date via MBE growth.

U2 - 10.1103/PhysRevMaterials.4.014003

DO - 10.1103/PhysRevMaterials.4.014003

M3 - Article

VL - 4

JO - Physical Review Materials

JF - Physical Review Materials

SN - 2475-9953

IS - 1

M1 - 014003

ER -

Related by author

  1. Strong-coupling charge density wave in monolayer TiSe2

    Watson, M. D., Rajan, A., Antonelli, T., Underwood, K., Marković, I., Mazzola, F., Clark, O. J., Siemann, G-R., Biswas, D., Hunter, A., Jandura, S., Reichstetter, J., Mclaren, M., Le Fèvre, P., Vinai, G. & King, P. D. C., 12 Oct 2020, In: 2D Materials. 8, 1, 015004.

    Research output: Contribution to journalArticlepeer-review

  2. Direct observation of the energy gain underpinning ferromagnetic superexchange in the electronic structure of CrGeTe3

    Watson, M. D., Marković, I., Mazzola, F., Rajan, A., Morales, E. A., Burn, D. M., Hesjedal, T., van der Laan, G., Mukherjee, S., Kim, T. K., Bigi, C., Vobornik, I., Hatnean, M. C., Balakrishnan, G. & King, P. D. C., 18 May 2020, In: Physical Review. B, Condensed matter and materials physics. 101, 205125.

    Research output: Contribution to journalArticlepeer-review

  3. Proximity-induced ferromagnetism and chemical reactivity in few layers VSe2 heterostructures

    Vinai, G., Bigi, C., Rajan, A., Watson, M. D., Lee, T. -L., Mazzola, F., Modesti, S., Barua, S., Ciomaga Hatnean, M., Balakrishnan, G., King, P., Torelli, P., Rossi, G. & Panaccione, G., 8 Jan 2020, In: Physical Review. B, Condensed matter and materials physics. 101, 3, 035404.

    Research output: Contribution to journalArticlepeer-review

  4. Electronic structure and enhanced charge-density wave order of monolayer VSe2

    Feng, J., Biswas, D., Akhil, R., Watson, M. D., Mazzola, F., Clark, O. J., Underwood, K., Markovic, I., McLaren, M., Hunter, A., Burn, D. M., Duffy, L. B., Barua, S., Balakrishnan, G., Bertran, F., Le Fevre, P., Kim, T. K., van der Laan, G., Hesjedal, T., Wahl, P. & 1 others, King, P. D. C., 11 Jul 2018, In: Nano Letters. 18, 7, p. 4493-4499 7 p.

    Research output: Contribution to journalLetterpeer-review

  5. Ultrafast triggering of insulator-metal transition in two-dimensional VSe2

    Biswas, D., Jones, A. J. H., Majchrzak, P., Choi, B. K., Lee, T-H., Volckaert, K., Feng, J., Marković, I., Andreatta, F., Kang, C-J., Kim, H. J., Lee, I. H., Jozwiak, C., Rotenberg, E., Bostwick, A., Sanders, C. E., Zhang, Y., Karras, G., Chapman, R. T., Wyatt, A. S. & 7 others, Springate, E., Miwa, J. A., Hofmann, P., King, P. D. C., Chang, Y. J., Lanatà, N. & Ulstrup, S., 18 Feb 2021, In: Nano Letters. Articles ASAP, 8 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Direct insight into the band structure of SrNbO3

    Bigi, C., Orgiani, P., Slawinska, J., Fujii, J., Irvine, J. T., Picozzi, S., Panaccione, G., Vobornik, I., Rossi, G., Payne, D. & Borgatti, F., 27 Feb 2020, In: Physical Review Materials. 4, 2, 7 p., 025006.

    Research output: Contribution to journalArticlepeer-review

  2. Distinct behaviour of localized and delocalized carriers in anatase TiO2 (001) during reaction with O2

    Bigi, C., Tang, Z., Pierantozzi, G., Orgiani, P., Das, P., Fujii, J., Vobornik, I., Pincelli, T., Troglia, A., Lee, T., Ciancio, R., Drazic, G., Verdini, A., Regoutz, A., King, P., Biswas, D., Rossi, G., Panaccione, G. & Selloni, A., 28 Feb 2020, In: Physical Review Materials. 4, 2, 9 p., 025801.

    Research output: Contribution to journalArticlepeer-review

  3. Realizing square and diamond lattice S =1/2 Heisenberg antiferromagnet models in the α and β phases of the coordination framework, KTi(C2O4)2⋅xH2O

    Abdeldaim, A. H., Li, T., Farrar, L., Tsirlin, A. A., Yao, W., Gibbs, A. S., Manuel, P., Lightfoot, P., Nilsen, G. J. & Clark, L., 23 Oct 2020, In: Physical Review Materials. 4, 10, 12 p., 104414.

    Research output: Contribution to journalArticlepeer-review

  4. Atomic-scale coexistence of short-range magnetic order and superconductivity in Fe1+ySe0.1Te0.9

    Aluru, R. K. P., Zhou, H., Essig, A., Reid, J-P., Tsurkan, V., Loidl, A., Deisenhofer, J. & Wahl, G. P., 19 Aug 2019, In: Physical Review Materials. 3, 8, 084805.

    Research output: Contribution to journalArticlepeer-review

ID: 264359430

Top